1
|
Quanz SP, Absil O, Benz W, Bonfils X, Berger JP, Defrère D, van Dishoeck E, Ehrenreich D, Fortney J, Glauser A, Grenfell JL, Janson M, Kraus S, Krause O, Labadie L, Lacour S, Line M, Linz H, Loicq J, Miguel Y, Pallé E, Queloz D, Rauer H, Ribas I, Rugheimer S, Selsis F, Snellen I, Sozzetti A, Stapelfeldt KR, Udry S, Wyatt M. Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability, and diversity. EXPERIMENTAL ASTRONOMY 2021; 54:1197-1221. [PMID: 36915622 PMCID: PMC9998579 DOI: 10.1007/s10686-021-09791-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals. In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we argue that a large space-based mission designed to detect and investigate thermal emission spectra of terrestrial exoplanets in the mid-infrared wavelength range provides unique scientific potential to address these goals and surpasses the capabilities of other approaches. While NASA might be focusing on large missions that aim to detect terrestrial planets in reflected light, ESA has the opportunity to take leadership and spearhead the development of a large mid-infrared exoplanet mission within the scope of the "Voyage 2050" long-term plan establishing Europe at the forefront of exoplanet science for decades to come. Given the ambitious science goals of such a mission, additional international partners might be interested in participating and contributing to a roadmap that, in the long run, leads to a successful implementation. A new, dedicated development program funded by ESA to help reduce development and implementation cost and further push some of the required key technologies would be a first important step in this direction. Ultimately, a large mid-infrared exoplanet imaging mission will be needed to help answer one of humankind's most fundamental questions: "How unique is our Earth?"
Collapse
Affiliation(s)
- Sascha P. Quanz
- ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | - Oliver Krause
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | | | | | | - Hendrik Linz
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | - Jérôme Loicq
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
| | | | - Enric Pallé
- Instituto de Astrofisica de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Heike Rauer
- German Aerospace Center (DLR), Berlin, Germany
| | - Ignasi Ribas
- Institut de Ciencies de l’Espai, Barcelona, Spain
| | | | - Franck Selsis
- Laboratoire d’astrophysique de Bordeaux, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
2
|
Davies MB. Multiple, quiet, and close by. Science 2020; 368:1432. [PMID: 32587010 DOI: 10.1126/science.abb0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Melvyn B Davies
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Del Genio AD, Kiang NY, Way MJ, Amundsen DS, Sohl LE, Fujii Y, Chandler M, Aleinov I, Colose CM, Guzewich SD, Kelley M. Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. THE ASTROPHYSICAL JOURNAL 2019; 884:75. [PMID: 33100349 PMCID: PMC7580787 DOI: 10.3847/1538-4357/ab3be8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The potential habitability of known exoplanets is often categorized by a nominal equilibrium temperature assuming a Bond albedo of either ∼0.3, similar to Earth, or 0. As an indicator of habitability, this leaves much to be desired, because albedos of other planets can be very different, and because surface temperature exceeds equilibrium temperature due to the atmospheric greenhouse effect. We use an ensemble of general circulation model simulations to show that for a range of habitable planets, much of the variability of Bond albedo, equilibrium temperature and even surface temperature can be predicted with useful accuracy from incident stellar flux and stellar temperature, two known parameters for every confirmed exoplanet. Earth's Bond albedo is near the minimum possible for habitable planets orbiting G stars, because of increasing contributions from clouds and sea ice/snow at higher and lower instellations, respectively. For habitable M star planets, Bond albedo is usually lower than Earth's because of near-IR H2O absorption, except at high instellation where clouds are important. We apply relationships derived from this behavior to several known exoplanets to derive zeroth-order estimates of their potential habitability. More expansive multivariate statistical models that include currently non-observable parameters show that greenhouse gas variations produce significant variance in albedo and surface temperature, while increasing length of day and land fraction decrease surface temperature; insights for other parameters are limited by our sampling. We discuss how emerging information from global climate models might resolve some degeneracies and help focus scarce observing resources on the most promising planets.
Collapse
Affiliation(s)
- Anthony D Del Genio
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - Nancy Y Kiang
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - David S Amundsen
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Linda E Sohl
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
| | - Yuka Fujii
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Mark Chandler
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
| | - Igor Aleinov
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
| | - Christopher M Colose
- NASA Postdoctoral Program, Goddard Institute for Space Studies, New York, NY 10025, USA
| | | | - Maxwell Kelley
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- SciSpace LLC, 2880 Broadway, New York, NY 10025, USA
| |
Collapse
|
4
|
Kreidberg L, Koll DDB, Morley C, Hu R, Schaefer L, Deming D, Stevenson KB, Dittmann J, Vanderburg A, Berardo D, Guo X, Stassun K, Crossfield I, Charbonneau D, Latham DW, Loeb A, Ricker G, Seager S, Vanderspek R. Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 2019; 573:87-90. [DOI: 10.1038/s41586-019-1497-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/22/2019] [Indexed: 11/09/2022]
|
5
|
Léger A, Defrère D, Muñoz AG, Godolt M, Grenfell JL, Rauer H, Tian F. Searching for Atmospheric Bioindicators in Planets around the Two Nearby Stars, Proxima Centauri and Epsilon Eridani-Test Cases for Retrieval of Atmospheric Gases with Infrared Spectroscopy. ASTROBIOLOGY 2019; 19:797-810. [PMID: 30985192 DOI: 10.1089/ast.2018.1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We tested the ability of thermal infrared spectroscopy to retrieve assumed atmospheric compositions for different types of planets orbiting Proxima Centauri and Epsilon Eridani. Six cases are considered, covering a range of atmospheric compositions and some diversity in the bulk composition (rocky, water ocean, hydrogen rich) and the spectral type of the parent star (M and K stars). For some cases, we applied coupled climate chemistry, or climate-only calculations; for other cases, we assumed the atmospheric composition, ground temperature, and surface reflectivity. The IR emission was then calculated from line-by-line radiative transfer models and used to investigate retrieval of input atmospheric species. For the six cases considered, no false positive of the triple bioindicator (H2O, CO2, and O2, in specified conditions) was found. In some cases, results show that the simultaneous acquisition of a visible spectrum would be valuable, for example, when CO2 is very abundant and its 9.4 μm satellite band hides the 9.6 μm O3 band in the IR. In each case, determining the mass appears mandatory to identify the planet's nature and have an idea of surface conditions, which are necessary when testing for the presence of life.
Collapse
Affiliation(s)
- A Léger
- 1 Institut d'Astrophysique Spatiale (IAS), University of Paris-Saclay, Orsay, France
- 2 Institut d'Astrophysique Spatiale (IAS), CNRS, Orsay, France
| | - D Defrère
- 3 Space Sciences Technology & Astrophysics Research (STAR) Institute, University of Liège, Liège, Belgium
| | - A García Muñoz
- 4 Centre for Astronomy and Astrophysics (ZAA), Berlin Institute of Technology (TUB), Berlin, Germany
| | - M Godolt
- 4 Centre for Astronomy and Astrophysics (ZAA), Berlin Institute of Technology (TUB), Berlin, Germany
| | - J L Grenfell
- 5 Department of Exoplanets and Atmospheres (EPA), German Aerospace Centre (DLR), Berlin, Germany
| | - H Rauer
- 4 Centre for Astronomy and Astrophysics (ZAA), Berlin Institute of Technology (TUB), Berlin, Germany
- 5 Department of Exoplanets and Atmospheres (EPA), German Aerospace Centre (DLR), Berlin, Germany
- 6 Institute of Geological Sciences, Free University of Berlin (FUB), Berlin, Germany
| | - F Tian
- 7 Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
|
7
|
Ground-based Optical Transmission Spectroscopy of the Small, Rocky Exoplanet GJ 1132b. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-3881/aac6dd] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Fujii Y, Angerhausen D, Deitrick R, Domagal-Goldman S, Grenfell JL, Hori Y, Kane SR, Pallé E, Rauer H, Siegler N, Stapelfeldt K, Stevenson KB. Exoplanet Biosignatures: Observational Prospects. ASTROBIOLOGY 2018; 18:739-778. [PMID: 29938537 PMCID: PMC6016572 DOI: 10.1089/ast.2017.1733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/13/2018] [Indexed: 05/04/2023]
Abstract
Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities and limitations in characterizing temperate terrestrial planets with future observational capabilities through the 2030s and beyond, as a basis of a broad range of discussions on how to advance "astrobiology" with exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but also of more general planetary properties that provide circumstantial evidence, since the evaluation of any biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming years will focus on those around nearby late-type stars. The James Webb Space Telescope (JWST) and later 30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect relevant features as well as frameworks to diagnose planets based on the observables. Key Words: Exoplanets-Biosignatures-Characterization-Planetary atmospheres-Planetary surfaces. Astrobiology 18, 739-778.
Collapse
Affiliation(s)
- Yuka Fujii
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, Japan
| | - Daniel Angerhausen
- CSH Fellow for Exoplanetary Astronomy, Center for Space and Habitability (CSH), Universität Bern, Bern, Switzerland
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Russell Deitrick
- Department of Astronomy, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute's Virtual Planetary Laboratory
| | - Shawn Domagal-Goldman
- NASA Astrobiology Institute's Virtual Planetary Laboratory
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - John Lee Grenfell
- Department of Extrasolar Planets and Atmospheres (EPA), Institute of Planetary Research, German Aerospace Centre (DLR), Berlin, Germany
| | - Yasunori Hori
- Astrobiology Center, National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, Japan
| | - Stephen R. Kane
- Department of Earth Sciences, University of California, Riverside, California, USA
| | - Enric Pallé
- Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain
- Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain
| | - Heike Rauer
- Department of Extrasolar Planets and Atmospheres (EPA), Institute of Planetary Research, German Aerospace Centre (DLR), Berlin, Germany
- Center for Astronomy and Astrophysics, Berlin Institute of Technology, Berlin, Germany
| | - Nicholas Siegler
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Exoplanet Exploration Office
| | - Karl Stapelfeldt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Exoplanet Exploration Office
| | | |
Collapse
|
9
|
Meadows VS, Reinhard CT, Arney GN, Parenteau MN, Schwieterman EW, Domagal-Goldman SD, Lincowski AP, Stapelfeldt KR, Rauer H, DasSarma S, Hegde S, Narita N, Deitrick R, Lustig-Yaeger J, Lyons TW, Siegler N, Grenfell JL. Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment. ASTROBIOLOGY 2018; 18:630-662. [PMID: 29746149 PMCID: PMC6014580 DOI: 10.1089/ast.2017.1727] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 05/04/2023]
Abstract
We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures-Oxygenic photosynthesis-Exoplanets-Planetary atmospheres. Astrobiology 18, 630-662.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Giada N. Arney
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Ames Research Center, Exobiology Branch, Mountain View, California
| | - Edward W. Schwieterman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Andrew P. Lincowski
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Karl R. Stapelfeldt
- NASA Exoplanet Exploration Program, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Heike Rauer
- German Aerospace Center, Institute of Planetary Research, Extrasolar Planets and Atmospheres, Berlin, Germany
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
- Institute of Marine and Environmental Technology, University System of Baltimore, Maryland
| | - Siddharth Hegde
- Carl Sagan Institute, Cornell University, Ithaca, New York
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Norio Narita
- Department of Astronomy, The University of Tokyo, Tokyo, Japan
- Astrobiology Center, NINS, Tokyo, Japan
- National Astronomical Observatory of Japan, NINS, Tokyo, Japan
| | - Russell Deitrick
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Jacob Lustig-Yaeger
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Timothy W. Lyons
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
| | - Nicholas Siegler
- NASA Exoplanet Exploration Program, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - J. Lee Grenfell
- German Aerospace Center, Institute of Planetary Research, Extrasolar Planets and Atmospheres, Berlin, Germany
| |
Collapse
|
10
|
An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-3881/aaa5b5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Deitrick R, Barnes RK, Fleming DP, Luger R, Driscoll PE, Quinn TR, Crisp D. The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. ASTROBIOLOGY 2018; 18:133-189. [PMID: 29431479 PMCID: PMC5820795 DOI: 10.1089/ast.2016.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/04/2017] [Indexed: 05/21/2023]
Abstract
Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere. We find that James Webb Space Telescope (JWST) observations longward of 10 μm could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST but may be within the reach of larger-aperture telescopes. Direct imaging spectra may detect O4 absorption, which is diagnostic of massive water loss and O2 retention, rather than a photosynthetic biosphere. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 μm would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4-which has a longer atmospheric lifetime under Proxima Centauri's incident UV-and either photosynthetically produced O2 or a hydrocarbon haze layer. Key Words: Planetary habitability and biosignatures-Planetary atmospheres-Exoplanets-Spectroscopic biosignatures-Planetary science-Proxima Centauri b. Astrobiology 18, 133-189.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Giada N. Arney
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Edward W. Schwieterman
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Department of Earth Sciences, University of California at Riverside, Riverside, California
| | - Jacob Lustig-Yaeger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Andrew P. Lincowski
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Tyler Robinson
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Russell Deitrick
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rory K. Barnes
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David P. Fleming
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rodrigo Luger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Peter E. Driscoll
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC
| | - Thomas R. Quinn
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David Crisp
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
12
|
|
13
|
Inner Workings: All eyes on Proxima Centauri b. Proc Natl Acad Sci U S A 2017; 114:6646-6648. [PMID: 28655828 DOI: 10.1073/pnas.1706680114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Abstract
Abstract
Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an ‘artificial edge' that is characteristically shifted in wavelength shortwards of the ‘red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.
Collapse
Affiliation(s)
- Manasvi Lingam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
| | - Abraham Loeb
- Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
A Statistical Comparative Planetology Approach to the Hunt for Habitable Exoplanets and Life Beyond the Solar System. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/2041-8213/aa738a] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
|
17
|
|