1
|
Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence 2021; 11:400-413. [PMID: 32375558 PMCID: PMC7219522 DOI: 10.1080/21505594.2020.1760443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ongoing with current combinations of antiretroviral drugs for the treatment of Human Immunodeficiency Virus (HIV) infection can successfully maintain long-term suppression of HIV-1 replication in plasma. Still, none of these therapies is capable of extinguishing the virus from the long-lived cellular reservoir, including monocyte-derived macrophages (MDM), that means the principal obstacle to HIV cure. MDM are widely distributed in all tissues and organs, including central system nervous (CNS) where they represent the most frequent HIV-infected cells that means the principal obstacle to HIV cure. Current FDA-approved antiretroviral drugs target viral reverse transcriptase, protease, integrase, and entry processes (coreceptor or fusion blockade). It is desirable to continue to develop new antiretrovirals directed against alternative targets in the virus lifecycle in order to further optimize therapeutic options, overcome resistance to existing medications, and potentially contribute to the elimination of viral reservoirs.This review provides a comprehensive overview of the activity of antiretroviral drugs (classical and upcoming) in monocytes-derived macrophages (MDM). Defining the antiviral activity of these drugs in this important cellular HIV-1 reservoir provides crucial hints about their efficacy in HIV-1 infected patients.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ana Borrajo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy.,Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
2
|
Latinovic OS, Reitz M, Heredia A. CCR5 Inhibitors and HIV-1 Infection. JOURNAL OF AIDS AND HIV TREATMENT 2019; 1:1-5. [PMID: 31414081 PMCID: PMC6693856 DOI: 10.33696/aids.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olga S. Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
4
|
Pharmacokinetics, Safety and Efficacy of Maraviroc in Treatment-experienced Pediatric Patients Infected With CCR5-Tropic HIV-1. Pediatr Infect Dis J 2018; 37:459-465. [PMID: 29023357 PMCID: PMC5916460 DOI: 10.1097/inf.0000000000001808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Maraviroc is a CC-chemokine receptor 5 antagonist approved to treat adults infected with CC-chemokine receptor 5-tropic (R5) HIV-1. Study A4001031 was conducted to evaluate the pharmacokinetics, safety and efficacy of maraviroc in combination with optimized background therapy in treatment-experienced pediatric patients infected with R5 HIV-1 and support registration of maraviroc for pediatric use. METHODS This is an open-label, 2-stage, age-stratified, noncomparative multicenter study. One-hundred and three participants were enrolled into 4 age/formulation cohorts and dosed twice daily. Initial doses were determined by body surface area and optimized background therapy, based on drug interactions with maraviroc in adults. Dose adjustment and pharmacokinetic reevaluation occurred if the average concentrations (Cavg) at Week 2 were <100 ng/mL (Stage 1-dose finding). RESULTS Data from the Week 48 analysis demonstrated that 49/50 Stage 1 participants rolling over into Stage 2 (safety and efficacy) achieved Cavg ≥100 ng/mL. Doses were identified that achieved similar concentration ranges to those seen in adults. The majority (90/103) received optimized background therapy containing potent cytochrome P450 3A inhibitors. Maraviroc was well tolerated and the safety and efficacy were comparable to those of adults. All cohorts had a mean decrease from baseline in HIV-1 RNA of >1 log10. Increases from baseline in the median CD4+ cell count and percentage were seen for all age groups. CONCLUSIONS The maraviroc dosing strategy resulted in participants achieving the target Cavg, with exposure ranges similar to those observed in adults on approved doses. The safety and efficacy of maraviroc in this pediatric population were comparable to those seen in adults.
Collapse
|
5
|
TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus. J Acquir Immune Defic Syndr 2017; 74:229-241. [PMID: 27749600 DOI: 10.1097/qai.0000000000001190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcription activator-like effector nuclease (TALEN) represents a valuable tool for genomic engineering due to its single-nucleotide precision, high nuclease activity, and low cytotoxicity. We report here systematic design and characterization of 28 novel TALENs targeting multiple regions of CCR5 gene (CCR5-TALEN) which encodes the co-receptor critical for entry of human immunodeficiency virus type I (HIV-1). By systemic characterization of these CCR5-TALENs, we have identified one (CCR5-TALEN-515) with higher nuclease activity, specificity, and lower cytotoxicity compared with zinc-finger nuclease (CCR5-ZFN) currently undergoing clinical trials. Sequence analysis of target cell line GHOST-CCR5-CXCR4 and human primary CD4 T cells showed that the double-strand breaks at the TALEN targeted sites resulted in truncated or nonfunctional CCR5 proteins thereby conferring protection against HIV-1 infection in vitro. None of the CCR5-TALENs had detectable levels of off-target nuclease activity against the homologous region in CCR2 although substantial level was identified for CCR5-ZFN in the primary CD4 T cells. Our results suggest that the CCR5-TALENs identified here are highly functional nucleases that produce protective genetic alterations to human CCR5. Application of these TALENs directly to the primary CD4 T cells and CD34 hematopoietic stem cells (HSCs) of infected individuals could help to create an immune system resistant to HIV-1 infection, recapitulating the success of "Berlin patient" and serving as an essential first step towards a "functional" cure of AIDS.
Collapse
|
6
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
7
|
Aceti A, Gianserra L, Lambiase L, Pennica A, Teti E. Pharmacogenetics as a tool to tailor antiretroviral therapy: A review. World J Virol 2015; 4:198-208. [PMID: 26279982 PMCID: PMC4534812 DOI: 10.5501/wjv.v4.i3.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/20/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has substantially changed human immunodeficiency virus (HIV) infection from an inexorably fatal condition into a chronic disease with a longer life expectancy. This means that HIV patients should receive antiretroviral drugs lifelong, and the problems concerning with a chronic treatment (tolerability, side effects, adherence to treatment) have now become dominant. In this context, strategies for the treatment personalization have taken a central role in optimizing the therapeutic response and prevention of adverse drug reactions. In this setting, the study of pharmacogenetics features could be a very useful tool in clinical practice; moreover, nowadays the study of genetic profiles allows optimizations in the therapeutic management of People Living With HIV (PLWH) through the use of test introduced into clinical practice and approved by international guidelines for the adverse effects prevention such as the genetic test HLA-B*5701 to detect hypersensitivity to Abacavir. For other tests further studies are needed: CYP2B6 516 G > T testing may be able to identify patients at higher risk of Central Nervous System side effects following standard dosing of Efavirenz, UGT1A1*28 testing before initiation of antiretroviral therapy containing Atazanavir may aid in identifying individuals at risk of hyperbilirubinaemia. Pharmacogenetics represents a research area with great growth potential which may be useful to guide the rational use of antiretrovirals.
Collapse
|
8
|
Armijo E, Soto C, Davis BR. HIV/AIDS: modified stem cells in the spotlight. Cell Mol Life Sci 2014; 71:2641-9. [PMID: 24509823 PMCID: PMC11113296 DOI: 10.1007/s00018-014-1572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
Since HIV/AIDS was first recognized in 1981, an urgent need has existed for the development of novel therapeutic strategies to treat the disease. Due to the current antiretroviral therapy not being curative, human stem cell-based therapeutic intervention has emerged as an approach for its treatment. Genetically modified hematopoietic stem cells (HSCs) possess the potential to self-renew, reconstitute the immune system with HIV-resistant cells, and thus control, or even eliminate, viral replication. However, HSCs may be difficult to isolate in sufficient number from HIV-infected individuals for transplantation and/or re-infusion of autologous HSCs preparations would also include some contaminating HIV-infected cells. Furthermore, since genetic modification of HSCs is not completely efficient, the risk of providing unprotected immune cells to become new targets for HIV to infect could contribute to continued immune system failure. Therefore, induced pluripotent stem cells (iPSCs) should be considered a new potential source of cells to be engineered for HIV resistance and subsequently differentiated into clonal anti-HIV HSCs or hematopoietic progeny for transplant. In this article, we provide an overview of the current possible cellular therapies for treating HIV/AIDS.
Collapse
Affiliation(s)
- Enrique Armijo
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, 77030, TX, USA,
| | | | | |
Collapse
|
9
|
Savkovic B, Nichols J, Birkett D, Applegate T, Ledger S, Symonds G, Murray JM. A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol 2014; 10:e1003681. [PMID: 24945407 PMCID: PMC4063676 DOI: 10.1371/journal.pcbi.1003681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023] Open
Abstract
Gene therapy represents an alternative and promising anti-HIV modality to highly active antiretroviral therapy. It involves the introduction of a protective gene into a cell, thereby conferring protection against HIV. While clinical trials to date have delivered gene therapy to CD4+T cells or to CD34+ hematopoietic stem cells (HSC), the relative benefits of each of these two cellular targets have not been conclusively determined. In the present analysis, we investigated the relative merits of delivering a dual construct (CCR5 entry inhibitor + C46 fusion inhibitor) to either CD4+T cells or to CD34+ HSC. Using mathematical modelling, we determined the impact of each scenario in terms of total CD4+T cell counts over a 10 year period, and also in terms of inhibition of CCR5 and CXCR4 tropic virus. Our modelling determined that therapy delivery to CD34+ HSC generally resulted in better outcomes than delivery to CD4+T cells. An early one-off therapy delivery to CD34+ HSC, assuming that 20% of CD34+ HSC in the bone marrow were gene-modified (G+), resulted in total CD4+T cell counts ≥ 180 cells/ µL in peripheral blood after 10 years. If the uninfected G+ CD4+T cells (in addition to exhibiting lower likelihood of becoming productively infected) also exhibited reduced levels of bystander apoptosis (92.5% reduction) over non gene-modified (G-) CD4+T cells, then total CD4+T cell counts of ≥ 350 cells/ µL were observed after 10 years, even if initially only 10% of CD34+ HSC in the bone marrow received the protective gene. Taken together our results indicate that: 1.) therapy delivery to CD34+ HSC will result in better outcomes than delivery to CD4+T cells, and 2.) a greater impact of gene therapy will be observed if G+ CD4+T cells exhibit reduced levels of bystander apoptosis over G- CD4+T cells.
Collapse
Affiliation(s)
- Borislav Savkovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - James Nichols
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - Donald Birkett
- Department of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Tanya Applegate
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Scott Ledger
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Geoff Symonds
- St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Sydney, Australia
- Calimmune Pty Ltd, Darlinghurst, New South Wales, Australia
| | - John M. Murray
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
10
|
Problems and Prospects of Gene Therapy Against HIV. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Wood NT, Fadda E, Davis R, Grant OC, Martin JC, Woods RJ, Travers SA. The influence of N-linked glycans on the molecular dynamics of the HIV-1 gp120 V3 loop. PLoS One 2013; 8:e80301. [PMID: 24303005 PMCID: PMC3841175 DOI: 10.1371/journal.pone.0080301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
N-linked glycans attached to specific amino acids of the gp120 envelope trimer of a HIV virion can modulate the binding affinity of gp120 to CD4, influence coreceptor tropism, and play an important role in neutralising antibody responses. Because of the challenges associated with crystallising fully glycosylated proteins, most structural investigations have focused on describing the features of a non-glycosylated HIV-1 gp120 protein. Here, we use a computational approach to determine the influence of N-linked glycans on the dynamics of the HIV-1 gp120 protein and, in particular, the V3 loop. We compare the conformational dynamics of a non-glycosylated gp120 structure to that of two glycosylated gp120 structures, one with a single, and a second with five, covalently linked high-mannose glycans. Our findings provide a clear illustration of the significant effect that N-linked glycosylation has on the temporal and spatial properties of the underlying protein structure. We find that glycans surrounding the V3 loop modulate its dynamics, conferring to the loop a marked propensity towards a more narrow conformation relative to its non-glycosylated counterpart. The conformational effect on the V3 loop provides further support for the suggestion that N-linked glycosylation plays a role in determining HIV-1 coreceptor tropism.
Collapse
Affiliation(s)
- Natasha T. Wood
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| | - Elisa Fadda
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Ireland
| | - Robert Davis
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
| | - Oliver C. Grant
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Joanne C. Martin
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Robert J. Woods
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Simon A. Travers
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
12
|
Yuan Y, Yokoyama M, Maeda Y, Terasawa H, Harada S, Sato H, Yusa K. Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1(JR-FL) to maraviroc. PLoS One 2013; 8:e65115. [PMID: 23840315 PMCID: PMC3695986 DOI: 10.1371/journal.pone.0065115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/21/2013] [Indexed: 12/22/2022] Open
Abstract
Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4(+) cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5) derived from HIV-1(JR-FLan) is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V) in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan) to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD) simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i) changes in V3 configuration on the gp120 outer domain, (ii) reduction of an anti-parallel β-sheet in the V3 stem region, (iii) reduction in fluctuations of the V3 tip and stem regions, and (iv) a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.
Collapse
Affiliation(s)
- Yuzhe Yuan
- Transfusion Transmitted Diseases Center, Institute of Blood Transfusion, Chinese Academy of Medical Science, Chenghua District, Chengdu, Sichuan Province, P. R. China
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromi Terasawa
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, Japan
| | - Keisuke Yusa
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| |
Collapse
|
13
|
Savkovic B, Symonds G, Murray JM. Stochastic model of in-vivo X4 emergence during HIV infection: implications for the CCR5 inhibitor maraviroc. PLoS One 2012; 7:e38755. [PMID: 22866173 PMCID: PMC3398969 DOI: 10.1371/journal.pone.0038755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/11/2012] [Indexed: 12/30/2022] Open
Abstract
The emergence of X4 tropic viral strains throughout the course of HIV infection is associated with poorer prognostic outcomes and faster progressions to AIDS than for patients in whom R5 viral strains predominate. Here we investigate a stochastic model to account for the emergence of X4 virus via mutational intermediates of lower fitness that exhibit dual/mixed (D/M) tropism, and employ the model to investigate whether the administration of CCR5 blockers in-vivo is likely to promote a shift towards X4 tropism. We show that the proposed stochastic model can account for X4 emergence with a median time of approximately 4 years post-infection as a result of: 1.) random stochastic mutations in the V3 region of env during the reverse transcription step of infection; 2.) increasing numbers of CXCR4-expressing activated naive CD4+ T cells with declining total CD4+ T cell counts, thereby providing increased numbers of activated target cells for productive infection by X4 virus. Our model indicates that administration of the CCR5 blocker maraviroc does not promote a shift towards X4 tropism, assuming sufficient efficacy of background therapy (BT). However our modelling also indicates that administration of maraviroc as a monotherapy or with BT of suboptimal efficacy can promote emergence of X4 tropic virus, resulting in accelerated progression to AIDS. Taken together, our results demonstrate that maraviroc is safe and effective if co-administered with sufficiently potent BT, but that suboptimal BT may promote X4 emergence and accelerated progression to AIDS. These results underscore the clinical importance for careful selection of BT when CCR5 blockers are administered in-vivo.
Collapse
Affiliation(s)
- Borislav Savkovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
14
|
Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, Schooley RT, Wyles DL. Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals. J Infect Dis 2012; 205:656-62. [PMID: 22279172 DOI: 10.1093/infdis/jir802] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ITX 5061 is a scavenger receptor B1 antagonist that has entered phase 1 clinical trials in hepatitis C virus (HCV)-infected humans. We evaluated ITX 5061 in combination with interferon-α, ribavirin, and HCV protease and polymerase inhibitors in a genotype 2a infectious virus system. ITX 5061 is a potent inhibitor of HCV replication and is additive to synergistic with interferon-α, ribavirin, BILN2061, VX950, VX1, and 2'-C-methyladenosine. Resistance selection experiments were performed using a Jc1-FEO virus co-culture system and intermittent ITX 5061 exposure under neomycin selection. We identified a mutant virus with a substitution of aspartic acid for asparagine at the highly conserved position 415 in E2 (N415D). Introduction of this mutation into wild-type virus conferred high-level resistance to ITX 5061. There was no cross-resistance between ITX 5061 and HCV protease inhibitors or interferon-α. These results suggest that ITX 5061 is a promising compound for study in combination with other HCV inhibitors.
Collapse
Affiliation(s)
- Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Wijtmans M, Scholten DJ, de Esch IJ, Smit MJ, Leurs R. Therapeutic targeting of chemokine receptors by small molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e227-e314. [PMID: 24063737 DOI: 10.1016/j.ddtec.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
16
|
Bennett LD, Fox JM, Signoret N. Mechanisms regulating chemokine receptor activity. Immunology 2011; 134:246-56. [PMID: 21977995 PMCID: PMC3209565 DOI: 10.1111/j.1365-2567.2011.03485.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Co-ordinated movement and controlled positioning of leucocytes is key to the development, maintenance and proper functioning of the immune system. Chemokines and their receptors play an essential role in these events by mediating directed cell migration, often referred to as chemotaxis. The chemotactic property of these molecules is also thought to contribute to an array of pathologies where inappropriate recruitment of specific chemokine receptor-expressing leucocytes is observed, including cancer and inflammatory diseases. As a result, chemokine receptors have become major targets for therapeutic intervention, and during the past 15 years much research has been devoted to understanding the regulation of their biological activity. From these studies, processes which govern the availability of functional chemokine receptors at the cell surface have emerged as playing a central role. In this review, we summarize and discuss current knowledge on the molecular mechanisms contributing to the regulation of chemokine receptor surface expression, from gene transcription and protein degradation to post-translational modifications, multimerization, intracellular transport and cross-talk.
Collapse
Affiliation(s)
- Laura D Bennett
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | | | | |
Collapse
|
17
|
Yuan Y, Maeda Y, Terasawa H, Monde K, Harada S, Yusa K. A combination of polymorphic mutations in V3 loop of HIV-1 gp120 can confer noncompetitive resistance to maraviroc. Virology 2011; 413:293-9. [DOI: 10.1016/j.virol.2011.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/14/2011] [Accepted: 02/24/2011] [Indexed: 11/29/2022]
|
18
|
Abstract
PURPOSE OF REVIEW Individuals homozygous for a deletion in the chemokine receptor 5 (CCR5) gene (CCR5Δ32) are almost completely resistant to HIV-1 infection. A recent report that transplantation of hematopoietic stem or progenitor cells (HSCs) from a CCR5Δ32 homozygous donor effectively cured an HIV patient has increased interest in the development of strategies that could be used to recreate this phenotype using a patient's own cells. This review will focus on recent developments to disrupt CCR5 expression in both autologous T cells and HSCs. RECENT FINDINGS CCR5 expression in HIV-1 target cells can be suppressed by RNA-based gene suppression technologies such as RNA interference, or completely eliminated by zinc finger nuclease (ZFN)-mediated gene disruption. ZFNs bind specifically to a DNA sequence and generate a double-stranded DNA break, whose subsequent repair by the cell's error-prone nonhomologous end-joining pathway can lead to permanent disruption of the gene's open reading frame. Recent developments in humanized mouse models have facilitated preclinical studies that have demonstrated the ability of CCR5-targeted ZFNs to suppress HIV-1 in vivo, when used to modify human T cells or HSCs. The same CCR5 ZFNs are now being evaluated in a phase I clinical trial of ex vivo expanded autologous T cells. SUMMARY CCR5 gene knockout in T cells or HSCs by ZFNs effectively suppresses the replication of CCR5-tropic strains of HIV-1 in animal models. ZFNs are currently being evaluated in a phase I clinical trials using ex vivo expanded T cells and HSCs targeted therapies are under development.
Collapse
|
19
|
Kramer S, Buontempo P, Agrawal S, Ralston R. Imaging-based assay for identification and characterization of inhibitors of CXCR4-tropic HIV-1 envelope-dependent cell-cell fusion. ACTA ACUST UNITED AC 2011; 16:668-75. [PMID: 21474836 DOI: 10.1177/1087057111403480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infection of certain cell types by HIV results in formation of syncytia. This process can be blocked by antibodies or compounds that prevent interaction of viral envelope protein with host cell receptors. Here the authors describe an automated imaging-based assay for inhibitors of cell-cell fusion mediated by interaction of HIV gp120 with CXCR4 coreceptor. The assay quantifies syncytia formation between U87MG astrocytoma cells constitutively expressing CD4/CXCR4 and morphologically distinct Jurkat T lymphoma cells inducibly expressing HIV env. Each cell type was differentially labeled with vital dyes. Fusion was quantified by measuring size, shape, and color of Jurkat cells and Jurkat-harboring cell syncytia. Dose-response experiments with reference inhibitors AMD 3100 and KRH-1636 yielded potencies consistent with those obtained using standard antiviral assays. This assay complements virus-based infectivity assays for identification of inhibitors of membrane fusion events triggered by interaction of HIV gp120 with host CXCR4.
Collapse
Affiliation(s)
- Susanne Kramer
- Merck Research Laboratories, Department of Infectious Diseases, Kenilworth, NJ, USA.
| | | | | | | |
Collapse
|
20
|
Riva A, Vicenzi E, Galli M, Poli G. Strenuous resistance to natural HIV-1 disease progression: viral controllers and long-term nonprogressors. Future Virol 2011. [DOI: 10.2217/fvl.11.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 infection leads to AIDS and death within 8–10 years for most individuals in the absence of antiretroviral therapy (ART). However, a minority of infected individuals show the unusual capacity to spontaneously control disease progression after infection in the absence of any ART. So-called ‘long-term nonprogressors’ are defined by maintenance of peripheral CD4+ T-cell counts >500 cells/µl and good health without ART for >7 years since infection. More recently, ART-naive individuals who spontaneously control their viremia levels at either <50 or <2000 copies of RNA/ml for at least 12 months in the absence of ART have been named ‘elite controllers’ and ‘HIV controllers’, respectively. The overlap between long-term nonprogressors and elite controllers/HIV controllers is partial, and both groups collectively account for <5% of all infected individuals. Unraveling the nature of their relative resistance to HIV-1 disease progression would be of great value for HIV-prevention strategies.
Collapse
Affiliation(s)
- Agostino Riva
- Infectious Diseases & Immunopathology Section, Department of Clinical Sciences, L Sacco Hospital, Università di Milano, Italy
| | - Elisa Vicenzi
- Viral Pathogens & Biosafety & AIDS Immunopathogenesis Units, Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy; P2/P3 Laboratories, Via Olgettina n 58, 20132, Milano, Italy
| | - Massimo Galli
- Infectious Diseases & Immunopathology Section, Department of Clinical Sciences, L Sacco Hospital, Università di Milano, Italy
| | - Guido Poli
- Vita-Salute San Raffaele University, School of Medicine, Milano, Italy
| |
Collapse
|
21
|
Ferain T, Hoveyda H, Ooms F, Schols D, Bernard J, Fraser G. Agonist-Induced Internalization of CC Chemokine Receptor 5 as a Mechanism to Inhibit HIV Replication. J Pharmacol Exp Ther 2011; 337:655-62. [DOI: 10.1124/jpet.111.179622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Caffrey M. HIV envelope: challenges and opportunities for development of entry inhibitors. Trends Microbiol 2011; 19:191-7. [PMID: 21377881 PMCID: PMC3071980 DOI: 10.1016/j.tim.2011.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 01/24/2023]
Abstract
The HIV envelope proteins glycoprotein 120 (gp120) and glycoprotein 41 (gp41) play crucial roles in HIV entry, therefore they are of extreme interest in the development of novel therapeutics. Studies using diverse methods, including structural biology and mutagenesis, have resulted in a detailed model for envelope-mediated entry, which consists of multiple conformations, each a potential target for therapeutic intervention. In this review, the challenges, strategies and progress to date for developing novel entry inhibitors directed at disrupting HIV gp120 and gp41 function are discussed.
Collapse
Affiliation(s)
- Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
23
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|