1
|
Shang J, Qiao Y, Mao G, Qian L, Liu G, Wang H. Bleomycin-Fe(II) agent with potentiality for treating drug-resistant H1N1 influenza virus: A study using electrochemical RNA beacons. Anal Chim Acta 2021; 1180:338862. [PMID: 34538316 DOI: 10.1016/j.aca.2021.338862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Rapid emergence of new strains of drug-resistant H1N1 influenza viruses calls for effective drugs for the controls prior to their outbreaks. In the present work, electrochemical H1N1 RNA beacons have been newly designed for exploring the potentiality of an anticancer agent of Bleomycin (BLM) with Fe (ΙΙ) ions (BLM-Fe(ΙΙ)) alternatively the treatment of drug-resistant H1N1 strains with H274Y gene mutation. Herein, biotinylated (-) ssRNA of H1N1 virus and its complementary (+) ssRNA were labeled with electrochemical signal probes of ferrocene and anthraquinone, respectively. The resultants were hybridized and conjugated with avidin-modified magnetic beads to create electrochemical RNA beacons. The electrochemical signal variation of the H1N1 RNA beacon treated with the RNA degradation agent of BLM-Fe(ΙΙ) were monitored. Results indicate that the BLM-Fe(ΙΙ) agent could effectively cleave both H1N1 dsRNAs and ssRNAs at selective cutting sites, as evidenced by the mass spectrometry analysis. This indicates that the BLM-Fe(II) agent could be utilized to block the viral-host infection process by curbing the host-cell viral RNA-mRNA transcription or inactivate the viruses through the cleavage of viral genomes. The efficiency of the BLM-Fe(ΙΙ) agent was verified with clinical seasonal H1N1 samples using real-time polymerase chain reaction. The therapeutic gene drug of BLM-Fe(ΙΙ) holds great potential for controlling new strains of H1N1 virus resistant to clinical antiviral drugs. More importantly, the so designed RNA beacons may provide a rapid, sensitive and cost-effective platform of drug screening by monitoring the drug-DNA/RNA interactions.
Collapse
Affiliation(s)
- Jizhen Shang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchun Qiao
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Ministry of Education, Henan Normal University, Xinxiang, 453007, PR China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Hua Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
2
|
Efficacy of Neuraminidase Inhibitors against H5N6 Highly Pathogenic Avian Influenza Virus in a Nonhuman Primate Model. Antimicrob Agents Chemother 2020; 64:AAC.02561-19. [PMID: 32284377 DOI: 10.1128/aac.02561-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies.
Collapse
|
3
|
Ferraris O, Casalegno JS, Frobert E, Bouscambert Duchamp M, Valette M, Jacquot F, Raoul H, Lina B, Ottmann M. The NS Segment of H1N1pdm09 Enhances H5N1 Pathogenicity in a Mouse Model of Influenza Virus Infections. Viruses 2018; 10:v10090504. [PMID: 30227598 PMCID: PMC6164720 DOI: 10.3390/v10090504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 11/17/2022] Open
Abstract
In 2009, the co-circulation of H5N1 and H1N1pdm09 raised concerns that a reassortment event may lead to highly pathogenic influenza strains. H1N1pdm09 and H5N1 are able to infect the same target cells of the lower respiratory tract. To investigate the capacity of the emergence of reassortant viruses, we characterized viruses obtained from the co-infection of cells with H5N1 (A/Turkey/13/2006) and H1N1pdm09 (A/Lyon/969/2009 H1N1). In our analysis, all the screened reassortants possessed the PB2, HA, and NP segments from H5N1 and acquired one or two of the H1N1pdm09 segments. Moreover, the in vivo infections showed that the acquisition of the NS segment from H1N1pdm09 increased the virulence of H5N1 in mice. We conclude, therefore, that reassortment can occur between these two viruses, even if this process has never been detected in nature.
Collapse
Affiliation(s)
- Olivier Ferraris
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
| | - Jean-Sébastien Casalegno
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Emilie Frobert
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Maude Bouscambert Duchamp
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Martine Valette
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
- Laboratoire de Virologie, Centre National de Référence Virus des Infections Respiratoires, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Frédéric Jacquot
- Laboratoire P4 Jean Mérieux Inserm US003, 69365 CEDEX 07 Lyon, France.
| | - Hervé Raoul
- Laboratoire P4 Jean Mérieux Inserm US003, 69365 CEDEX 07 Lyon, France.
| | - Bruno Lina
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
- Laboratoire de Virologie, Centre National de Référence Virus des Infections Respiratoires, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Michèle Ottmann
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
| |
Collapse
|
4
|
Sonnberg S, Ducatez MF, DeBeauchamp J, Crumpton JC, Rubrum A, Sharp B, Hall RJ, Peacey M, Huang S, Webby RJ. Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent. J Virol 2016; 90:7647-56. [PMID: 27279619 PMCID: PMC4988147 DOI: 10.1128/jvi.00772-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.
Collapse
Affiliation(s)
| | | | | | | | - Adam Rubrum
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Hall
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Matthew Peacey
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Sue Huang
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Richard J Webby
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Tripathi S, Batra J, Lal SK. Interplay between influenza A virus and host factors: targets for antiviral intervention. Arch Virol 2015; 160:1877-91. [PMID: 26016443 DOI: 10.1007/s00705-015-2452-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Influenza A viruses (IAVs) pose a major public health threat worldwide. Recent experience with the 2013 H7N9 outbreak in China and the 2009 "swine flu" pandemic have shown that antiviral vaccines and drugs fall short of controlling the spread of disease in a timely and effective manner. Major problems include rapid emergence of drug-resistant influenza virus strains and the slow process of vaccine production. With the threat of a highly pathogenic H5N1 bird-flu pandemic looming large, it is crucial to develop novel ways of combating influenza A viruses. Targeting the host factors critical for influenza A virus replication has shown promise as a strategy to develop novel antiviral molecules with broad-spectrum protection. In this review, we summarize the role of currently identified host factors that play a critical role in the influenza A virus life cycle and discuss the most promising candidates for anti-influenza therapeutics.
Collapse
Affiliation(s)
- Shashank Tripathi
- Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | |
Collapse
|
6
|
Ye J, Wen F, Xu Y, Zhao N, Long L, Sun H, Yang J, Cooley J, Todd Pharr G, Webby R, Wan XF. Error-prone pcr-based mutagenesis strategy for rapidly generating high-yield influenza vaccine candidates. Virology 2015; 482:234-43. [PMID: 25899178 DOI: 10.1016/j.virol.2015.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/25/2014] [Accepted: 03/27/2015] [Indexed: 01/07/2023]
Abstract
Vaccination is the primary strategy for the prevention and control of influenza outbreaks. However, the manufacture of influenza vaccine requires a high-yield seed strain, and the conventional methods for generating such strains are time consuming. In this study, we developed a novel method to rapidly generate high-yield candidate vaccine strains by integrating error-prone PCR, site-directed mutagenesis strategies, and reverse genetics. We used this method to generate seed strains for the influenza A(H1N1)pdm09 virus and produced six high-yield candidate strains. We used a mouse model to assess the efficacy of two of the six candidate strains as a vaccine seed virus: both strains provided complete protection in mice against lethal challenge, thus validating our method. Results confirmed that the efficacy of these candidate vaccine seed strains was not affected by the yield-optimization procedure.
Collapse
Affiliation(s)
- Jianqiang Ye
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Yifei Xu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Nan Zhao
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Liping Long
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Hailiang Sun
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Jialiang Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Jim Cooley
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - G Todd Pharr
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children׳s Research Hospital, Memphis, TN, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
7
|
Using common spatial distributions of atoms to relate functionally divergent influenza virus N10 and N11 protein structures to functionally characterized neuraminidase structures, toxin cell entry domains, and non-influenza virus cell entry domains. PLoS One 2015; 10:e0117499. [PMID: 25706124 PMCID: PMC4337911 DOI: 10.1371/journal.pone.0117499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to identify the functional correlates of structural and sequence variation in proteins is a critical capability. We related structures of influenza A N10 and N11 proteins that have no established function to structures of proteins with known function by identifying spatially conserved atoms. We identified atoms with common distributed spatial occupancy in PDB structures of N10 protein, N11 protein, an influenza A neuraminidase, an influenza B neuraminidase, and a bacterial neuraminidase. By superposing these spatially conserved atoms, we aligned the structures and associated molecules. We report spatially and sequence invariant residues in the aligned structures. Spatially invariant residues in the N6 and influenza B neuraminidase active sites were found in previously unidentified spatially equivalent sites in the N10 and N11 proteins. We found the corresponding secondary and tertiary structures of the aligned proteins to be largely identical despite significant sequence divergence. We found structural precedent in known non-neuraminidase structures for residues exhibiting structural and sequence divergence in the aligned structures. In N10 protein, we identified staphylococcal enterotoxin I-like domains. In N11 protein, we identified hepatitis E E2S-like domains, SARS spike protein-like domains, and toxin components shared by alpha-bungarotoxin, staphylococcal enterotoxin I, anthrax lethal factor, clostridium botulinum neurotoxin, and clostridium tetanus toxin. The presence of active site components common to the N6, influenza B, and S. pneumoniae neuraminidases in the N10 and N11 proteins, combined with the absence of apparent neuraminidase function, suggests that the role of neuraminidases in H17N10 and H18N11 emerging influenza A viruses may have changed. The presentation of E2S-like, SARS spike protein-like, or toxin-like domains by the N10 and N11 proteins in these emerging viruses may indicate that H17N10 and H18N11 sialidase-facilitated cell entry has been supplemented or replaced by sialidase-independent receptor binding to an expanded cell population that may include neurons and T-cells.
Collapse
|
8
|
Ferraris O, Escuret V, Bouscambert M, Casalegno JS, Jacquot F, Raoul H, Caro V, Valette M, Lina B, Ottmann M. H1N1 influenza A virus neuraminidase modulates infectivity in mice. Antiviral Res 2012; 93:374-80. [PMID: 22321413 DOI: 10.1016/j.antiviral.2012.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/18/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
In the 2years since the onset of the H1N1 2009 pandemic virus (H1N1pdm09), sporadic cases of oseltamivir-resistant viruses have been reported. We investigated the impact of oseltamivir-resistant neuraminidase from H1N1 Brisbane-like (seasonal) and H1N1pdm09 viruses on viral pathogenicity in mice. Reassortant viruses with the neuraminidase from seasonal H1N1 virus were obtained by co-infection of a H1N1pdm09 virus and an oseltamivir-resistant H1N1 Brisbane-like virus. Oseltamivir-resistant H1N1pdm09 viruses were also isolated from patients. After biochemical characterization, the pathogenicity of these viruses was assessed in a murine model. We confirmed a higher infectivity, in mice, of the H1N1pdm09 virus compared to seasonal viruses. Surprisingly, the oseltamivir-resistant H1N1pdm09 virus was more infectious than its sensitive counterpart. Moreover, the association of H1N1pdm09 hemagglutinin and an oseltamivir-resistant neuraminidase improved the infectivity of reassortant viruses in mice, regardless of the NA origin: seasonal (Brisbane-like) or pandemic strain. This study highlights the need to closely monitor the emergence of oseltamivir-resistant viruses.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The 2009 influenza pandemic introduced a new influenza A/H1N1 subtype in the human population. This pandemic 2009 influenza A/H1N1 virus has natural resistance to the adamantanes class and has a low threshold to become resistant to the neuraminidase class of antiviral drugs. This review describes recent findings on influenza antiviral resistance in pandemic 2009 influenza A/H1N1 virus. RECENT FINDINGS Pandemic 2009 viruses have emerged with novel resistance patterns to the neuraminidase inhibitors. In addition, the identification of mutations that facilitated oseltamivir resistance in prepandemic influenza emphasizes the ability of influenza to become resistant to antiviral drugs without significant loss of fitness. SUMMARY Novel initiatives are required to find and develop high genetic barrier influenza therapeutic regimens for effective treatment of severe influenza virus infections.
Collapse
|
10
|
Escuret V, Ferraris O, Lina B. The antiviral resistance of influenza virus. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/thy.11.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 2011; 52:70-8. [PMID: 21684202 DOI: 10.1016/j.jcv.2011.05.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
The emergence of oseltamivir resistance in seasonal and pandemic influenza A/H1N1 has created challenges for diagnosis and clinical management. This review discusses how clinical virology laboratories have handled diagnosis of oseltamivir-resistant H1N1 and what we have learned from clinical studies and case series. Immunocompetent patients infected with oseltamivir-resistant H1N1 have similar outcomes as patients infected with oseltamivir-susceptible H1N1. However, immunocompromised patients infected with oseltamivir-resistant H1N1 experience potentially more risks of complication and transmissibility with few therapeutic options.
Collapse
Affiliation(s)
- Christian Renaud
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
12
|
Sun J, Miller JM, Beig A, Rozen L, Amidon GL, Dahan A. Mechanistic enhancement of the intestinal absorption of drugs containing the polar guanidino functionality. Expert Opin Drug Metab Toxicol 2011; 7:313-23. [DOI: 10.1517/17425255.2011.550875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
|