1
|
Li G, Facchini PJ. New frontiers in the biosynthesis of psychoactive specialized metabolites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102626. [PMID: 39288539 DOI: 10.1016/j.pbi.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
The recent relaxation of psychedelic drug regulations has prompted extensive clinical investigation into their potential use to treat diverse mental health conditions including anxiety, depression, post-traumatic stress, and substance-abuse disorders. Most clinical trials have relied on a small number of known molecules found in nature, such as psilocybin, or long-known synthetic analogs of natural metabolites, including lysergic acid diethylamide (LSD). Elucidation of biosynthetic pathways leading to several psychedelic compounds has established an opportunity to use synthetic biology as a complement to synthetic chemistry for the preparation of novel derivatives with potentially superior pharmacological properties compared with known drugs. Herein we review the metabolic biochemistry of pathways from plants, fungi and animals that yield the medicinally important hallucinogenic specialized metabolites ibogaine, mescaline, psilocybin, lysergic acid, and N,N-dimethyltryptamine (DMT). We also summarize the reconstitution of these pathways in microorganisms and comment on the integration of native and non-native enzymes to prepare novel derivatives.
Collapse
Affiliation(s)
- Ginny Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
2
|
Riet-Correa F, Cook D, Micheloud JF, Machado M, Mendonça FS, Schild AL, Lemos RA. A review on mycotoxins and mycotoxicoses in ruminants and Equidae in South America. Toxicon 2024; 247:107827. [PMID: 38909760 DOI: 10.1016/j.toxicon.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Of the mycotoxicoses caused by molds contaminating grains or their byproducts, leukoencephalomalacia of horses and less frequently aflatoxicosis in cattle have been reported in South America. However, the most important group of mycotoxins in the region are those caused by fungi that infect forages and other types of plants and have regional distribution. In this group, ergotism is important, both caused by Claviceps purpurea infecting grains or by Epichloë coenophiala infecting Schedonorus arundinaceus. Other important mycotoxicoses are those caused by indole-diterpenes produced by Clavicipitaceous fungi including Claviceps paspali in Paspalum spp., Claviceps cynodontes in Cynodon dactylon, and by Periglandula a seed transmitted symbiont associated with the tremorgenic plant Ipomoea asarifolia. The latter is an important poisoning in the northeastern and northern Brazil. Other important mycotoxicoses are those caused by swainsonine containing plants. It was demonstrated that swainsonine contained in Ipomoea carnea var. fistulosa is produced by an epibiotic fungus of the order Chaetothyriales whose mycelia develop on the adaxial surface of the leaves. Swainsonine is also produced by the symbiotic, endobiotic fungi Alternaria section Undifilum spp., which is associated with Astragalus spp. in the Argentinian Patagonia causing poisoning. Another form of mycotoxicosis occurs in poisoning by Baccharis spp., mainly B. coridifolia, a very important toxic plant in South America that contains macrocyclic trichothecenes probably produced by an endophytic fungus that has not yet been identified. Pithomycotoxicosis caused by Pithomyces chartarum used to be an important mycotoxicosis in the region, mainly in cattle grazing improved pastures of legumes and grasses. Slaframine poisoning, diplodiosis and poisoning by barley contaminated by Aspergillus clavatus has been rarely diagnosed in Brazil, Uruguay and Argentina.
Collapse
Affiliation(s)
- Franklin Riet-Correa
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, CEP: 40170-110, Brazil.
| | - Daniel Cook
- USDA/ARS Poisonous Plant Research Laboratory, 1150 East 1400 North, Logan, UT, 84341, United States
| | - Juan F Micheloud
- Universidad Católica de Salta. Facultad de ciencias agrarias y veterinarias, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Área de Sanidad Animal "Dr. Bernardo Jorge Carrillo"-Instituto de Investigación Animal Chaco Semiárido (Sede Salta) CIAP-INTITUTO NACIONAL DE TECNOLOGIA AGROPECUARIA. (INTA), Argentina
| | - Mizael Machado
- Plataforma de Investigación en Salud Animal (PSA), Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental del Norte, Tacuarembó, 45000, Uruguay
| | - Fabio S Mendonça
- Laboratório de Diagnóstico Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Lucia Schild
- Laboratório Regional de Diagnóstico, Faculdade de Veterinária, Universidade Federal de Pelotas, Campus Capão do Leão, 96010-900, RS, Brazil
| | - Ricardo Amaral Lemos
- Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, CEP 79010-900, Brazil
| |
Collapse
|
3
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
4
|
Zhang ZY, Feng Y, Tong SQ, Ding CY, Tao G, Han YF. Morphological and phylogenetic characterisation of two new soil-borne fungal taxa belonging to Clavicipitaceae (Hypocreales, Ascomycota). MycoKeys 2023; 98:113-132. [PMID: 37324546 PMCID: PMC10267719 DOI: 10.3897/mycokeys.98.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
The fungal taxa belonging to the Clavicipitaceae (Hypocreales, Ascomycota) are widely distributed and include diverse saprophytic, symbiotic and pathogenic species that are associated with soils, insects, plants, fungi and invertebrates. In this study, we identified two new fungal taxa belonging to the family Clavicipitaceae that were isolated from soils collected in China. Morphological characterisation and phylogenetic analyses showed that the two species belong to Pochonia (Pochoniasinensissp. nov.) and a new genus for which we propose Paraneoaraneomycesgen. nov. in Clavicipitaceae.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Yao Feng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Shuo-Qiu Tong
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Chen-Yu Ding
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Yan-Feng Han
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
5
|
Olaranont Y, Stewart AB, Songnuan W, Traiperm P. How and Where Periglandula Fungus Interacts with Different Parts of Ipomoea asarifolia. J Fungi (Basel) 2022; 8:jof8080823. [PMID: 36012811 PMCID: PMC9409888 DOI: 10.3390/jof8080823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Periglandula is a fungal genus that is associated with plants in the family Convolvulaceae. They produce medicinally important constituents called ergot alkaloids, which are stored in their host plants. Previously, the fungi were reported to mainly interact with young leaves and seeds of Convolvulaceae species. However, knowledge about how ergot alkaloid-producing fungi interact with their host plants is still lacking. Therefore, we investigated the interaction of Periglandula fungus with different plant parts of Ipomoea asarifolia, using molecular, histochemical, anatomical and micromorphological techniques. Our findings confirm the presence of Periglandula ipomoeae on six out of the eight plant parts examined (young folded leaves, mature leaves, flower buds, mature flowers, young seeds and mature seeds). The fungus was mostly distributed along external plant surfaces, and particularly on areas that were relatively unexposed. Our results suggest that the density of fungal mycelium varies depending on glandular trichome density and the growth stage of the host plant. Detection of the fungus in the flowers of its host plant, for the first time, fills a missing link in understanding how vertical transmission of Periglandula species occurs.
Collapse
|
6
|
Quach QN, Gardner DR, Clay K, Cook D. Phylogenetic Patterns of Swainsonine Presence in Morning Glories. Front Microbiol 2022; 13:871148. [PMID: 35591984 PMCID: PMC9111539 DOI: 10.3389/fmicb.2022.871148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Endosymbionts play important roles in the life cycles of many macro-organisms. The indolizidine alkaloid swainsonine is produced by heritable fungi that occurs in diverse plant families, such as locoweeds (Fabaceae) and morning glories (Convolvulaceae) plus two species of Malvaceae. Swainsonine is known for its toxic effects on livestock following the ingestion of locoweeds and the potential for pharmaceutical applications. We sampled and tested herbarium seed samples (n = 983) from 244 morning glory species for the presence of swainsonine and built a phylogeny based on available internal transcribed spacer (ITS) sequences of the sampled species. We show that swainsonine occurs only in a single morning glory clade and host species are established on multiple continents. Our results further indicate that this symbiosis developed ∼5 mya and that swainsonine-positive species have larger seeds than their uninfected conspecifics.
Collapse
Affiliation(s)
- Quynh N Quach
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Dale R Gardner
- United States Department of Agriculture - Agricultural Research Service, Poisonous Plant Research Laboratory, Logan, UT, United States
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Daniel Cook
- United States Department of Agriculture - Agricultural Research Service, Poisonous Plant Research Laboratory, Logan, UT, United States
| |
Collapse
|
7
|
Nishi O, Sushida H, Higashi Y, Iida Y. Entomopathogenic fungus Akanthomyces muscarius (Hypocreales: Cordycipitaceae) strain IMI 268317 colonises on tomato leaf surface through conidial adhesion and general and microcycle conidiation. Mycology 2022; 13:133-142. [PMID: 35711329 PMCID: PMC9196654 DOI: 10.1080/21501203.2021.1944929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Oumi Nishi
- National Agriculture and Food Research Organization (NARO), Mie, Japan
| | - Hirotoshi Sushida
- National Agriculture and Food Research Organization (NARO), Mie, Japan
| | - Yumiko Higashi
- National Agriculture and Food Research Organization (NARO), Mie, Japan
| | - Yuichiro Iida
- National Agriculture and Food Research Organization (NARO), Mie, Japan
| |
Collapse
|
8
|
Neyaz M, Gardner DR, Creamer R, Cook D. Localization of the Swainsonine-Producing Chaetothyriales Symbiont in the Seed and Shoot Apical Meristem in Its Host Ipomoea carnea. Microorganisms 2022; 10:microorganisms10030545. [PMID: 35336121 PMCID: PMC8951018 DOI: 10.3390/microorganisms10030545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Several species of fungi from the orders Chaetothyriales and Pleosporales have been reported to produce swainsonine and be associated as symbionts with plants of the Convolvulaceae and Fabaceae, respectively. An endosymbiont belonging to the Chaetothyriales produces swainsonine and grows as an epibiont on the adaxial leaf surfaces of Ipomoea carnea, but how the symbiont passes through plant growth and development is unknown. Herein, different types of microscopy were used to localize the symbiont in seeds and in cross sections of plant parts. The symbiont was found in several tissues including the hilum, the sclereids, and the hypocotyl of seeds. In five-day old seedlings and mature plants, the symbiont was found in the shoot apical meristem (SAM) and the adaxial surface of immature folded leaves. The mycelia generally formed a close association with peltate glandular trichomes. This report provides further data explaining the relationship between the seed transmitted Chaetothyriales symbiont and Ipomoea carnea. These results provide a possible explanation for how this symbiont, and others like Periglandula may persist and are transmitted over time.
Collapse
Affiliation(s)
- Marwa Neyaz
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Dale R. Gardner
- Poisonous Plant Research Laboratory, US Department of Agriculture, Logan, UT 84321, USA;
| | - Rebecca Creamer
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Daniel Cook
- Poisonous Plant Research Laboratory, US Department of Agriculture, Logan, UT 84321, USA;
- Correspondence:
| |
Collapse
|
9
|
Mongkolsamrit S, Noisripoom W, Thanakitpipattana D, Khonsanit A, Lamlertthon S, Luangsa-Ard JJ. New species in Aciculosporium, Shimizuomyces and a new genus Morakotia associated with plants in Clavicipitaceae from Thailand. Fungal Syst Evol 2022; 8:27-37. [PMID: 35005570 PMCID: PMC8687063 DOI: 10.3114/fuse.2021.08.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/14/2021] [Indexed: 11/07/2022] Open
Abstract
Three new fungal species in the Clavicipitaceae (Hypocreales, Ascomycota) associated with plants were collected in Thailand. Morphological characterisation and phylogenetic analyses based on multi-locus sequences of LSU, RPB1 and TEF1 showed that two species belong to Aciculosporium and Shimizuomyces. Morakotia occupies a unique clade and is proposed as a novel genus in Clavicipitaceae. Shimizuomyces cinereus and Morakotia fusca share the morphological characteristic of having cylindrical to clavate stromata arising from seeds. Aciculosporium siamense produces perithecial plates and occurs on a leaf sheath of an unknown panicoid grass.
Collapse
Affiliation(s)
- S Mongkolsamrit
- Plant Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - W Noisripoom
- Plant Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - D Thanakitpipattana
- Plant Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - A Khonsanit
- Plant Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - S Lamlertthon
- Center of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - J J Luangsa-Ard
- Plant Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
10
|
Beaulieu WT, Panaccione DG, Quach QN, Smoot KL, Clay K. Diversification of ergot alkaloids and heritable fungal symbionts in morning glories. Commun Biol 2021; 4:1362. [PMID: 34873267 PMCID: PMC8648897 DOI: 10.1038/s42003-021-02870-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Heritable microorganisms play critical roles in life cycles of many macro-organisms but their prevalence and functional roles are unknown for most plants. Bioactive ergot alkaloids produced by heritable Periglandula fungi occur in some morning glories (Convolvulaceae), similar to ergot alkaloids in grasses infected with related fungi. Ergot alkaloids have been of longstanding interest given their toxic effects, psychoactive properties, and medical applications. Here we show that ergot alkaloids are concentrated in four morning glory clades exhibiting differences in alkaloid profiles and are more prevalent in species with larger seeds than those with smaller seeds. Further, we found a phylogenetically-independent, positive correlation between seed mass and alkaloid concentrations in symbiotic species. Our findings suggest that heritable symbiosis has diversified among particular clades by vertical transmission through seeds combined with host speciation, and that ergot alkaloids are particularly beneficial to species with larger seeds. Our results are consistent with the defensive symbiosis hypothesis where bioactive ergot alkaloids from Periglandula symbionts protect seeds and seedlings from natural enemies, and provide a framework for exploring microbial chemistry in other plant-microbe interactions.
Collapse
Affiliation(s)
- Wesley T Beaulieu
- Department of Biology, Indiana University, Bloomington, IN, USA
- Jaeb Center for Health Research, Tampa, FL, USA
| | - Daniel G Panaccione
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Quynh N Quach
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Katy L Smoot
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Keith Clay
- Department of Biology, Indiana University, Bloomington, IN, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
11
|
Rämä T, Quandt CA. Improving Fungal Cultivability for Natural Products Discovery. Front Microbiol 2021; 12:706044. [PMID: 34603232 PMCID: PMC8481835 DOI: 10.3389/fmicb.2021.706044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
The pool of fungal secondary metabolites can be extended by activating silent gene clusters of cultured strains or by using sensitive biological assays that detect metabolites missed by analytical methods. Alternatively, or in parallel with the first approach, one can increase the diversity of existing culture collections to improve the access to new natural products. This review focuses on the latter approach of screening previously uncultured fungi for chemodiversity. Both strategies have been practiced since the early days of fungal biodiscovery, yet relatively little has been done to overcome the challenge of cultivability of as-yet-uncultivated fungi. Whereas earlier cultivability studies using media formulations and biological assays to scrutinize fungal growth and associated factors were actively conducted, the application of modern omics methods remains limited to test how to culture the fungal dark matter and recalcitrant groups of described fungi. This review discusses the development of techniques to increase the cultivability of filamentous fungi that include culture media formulations and the utilization of known chemical growth factors, in situ culturing and current synthetic biology approaches that build upon knowledge from sequenced genomes. We list more than 100 growth factors, i.e., molecules, biological or physical factors that have been demonstrated to induce spore germination as well as tens of inducers of mycelial growth. We review culturing conditions that can be successfully manipulated for growth of fungi and visit recent information from omics methods to discuss the metabolic basis of cultivability. Earlier work has demonstrated the power of co-culturing fungi with their host, other microorganisms or their exudates to increase their cultivability. Co-culturing of two or more organisms is also a strategy used today for increasing cultivability. However, fungi possess an increased risk for cross-contaminations between isolates in existing in situ or microfluidics culturing devices. Technological improvements for culturing fungi are discussed in the review. We emphasize that improving the cultivability of fungi remains a relevant strategy in drug discovery and underline the importance of ecological and taxonomic knowledge in culture-dependent drug discovery. Combining traditional and omics techniques such as single cell or metagenome sequencing opens up a new era in the study of growth factors of hundreds of thousands of fungal species with high drug discovery potential.
Collapse
Affiliation(s)
- Teppo Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
12
|
Sun Y, Li M, Wang Y, Li L, Wang M, Li X, Xu M, Loake GJ, Guo M, Jiang J. Ceratocystis fimbriata Employs a Unique Infection Strategy Targeting Peltate Glandular Trichomes of Sweetpotato ( Ipomoea batatas) Plants. PHYTOPATHOLOGY 2020; 110:1923-1933. [PMID: 32689905 DOI: 10.1094/phyto-05-20-0165-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The infection processes of Ceratocystis fimbriata BMPZ13 (BMPZ13) was elucidated on vegetative tissues of sweetpotato plants employing light and scanning electron microscopy. Vegetative tissues infected with C. fimbriata BMPZ13 by either wounding or nonwounding inoculation methods developed typical disease symptoms, establishing black rot in stems and necrosis on buds, young leaves, and stems of sprouts, in addition to wilt on leaves and shoot cuttings, typical of vascular associated diseases. The runner hyphae of C. fimbriata BMPZ13 formed from germinated conidia were able to directly penetrate the epidermal cuticle for initial infection and invade sweetpotato peltate glandular trichomes, specialized secretory structures to store and secrete metabolites. A two-step biotrophic phase was observed with nonwounding inoculation on leaves and stems, featuring both intercellular and intracellular invasive hyphae, with the latter found within living cells of the leaf epidermis. Subsequent to the biotrophic phase was a necrotrophic phase displaying cell death in infected leaves and veins. Additionally, this cell death was an iron-associated ferroptosis, supporting the notion that iron is involved in the necrotrophic phase of C. fimbriata BMPZ13 infection. Significantly, we establish that C. fimbriata employs a unique infection strategy: the targeting of peltate glandular trichomes. Collectively, our findings show that C. fimbriata is a plant fungal pathogen with a hemibiotrophic infection style in sweetpotato vegetative tissues.
Collapse
Affiliation(s)
- Yong Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Mengqiu Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Yansu Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Meng Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Xintong Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Mengke Xu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Gary J Loake
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Ming Guo
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P.R. China
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, P.R. China
| |
Collapse
|
13
|
Kaur N, Cooper WR, Duringer JM, Rashed A, Badillo-Vargas IE, Esparza-Díaz G, Horton DR. Mortality of Potato Psyllid (Hemiptera: Triozidae) on Host Clippings Inoculated With Ergot Alkaloids. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2079-2085. [PMID: 32651952 DOI: 10.1093/jee/toaa144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Šulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.
Collapse
Affiliation(s)
| | - W Rodney Cooper
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | | | - Arash Rashed
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | | | - Gabriela Esparza-Díaz
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX
| | - David R Horton
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| |
Collapse
|
14
|
Tanaka E, Shrestha B, Shivas RG. Commelinaceomyces, gen. nov., for four clavicipitaceous species misplaced in Ustilago that infect Commelinaceae. Mycologia 2020; 112:649-660. [PMID: 32412345 DOI: 10.1080/00275514.2020.1745524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A fungus causing false smut in the flowers of Murdannia keisak (Commelinaceae, Commelinales, Monocots) in Japan was morphologically identical to Ustilago aneilematis. The fungus infected ovaries of most flowers of host plants. Infected flowers were filled with yellow to orange thick-walled conidia that became olivaceous green at maturity. However, multilocus phylogenetic analysis of DNA sequences (18S, 28S, translation elongation factor 1α [TEF], the largest [RPB1] and the second largest [RPB2] subunit of RNA polymerase II) showed that the fungus belonged to the tribe Ustilaginoideae (Clavicipitaceae, Hypocreales, Ascomycota). Microscopic examination showed that the fungus developed conidia at the apex of conidiogenous cells, in contrast to other species in the Ustilaginoideae that develop conidia pleurogenously. A new genus, Commelinaceomyces, is formally proposed in the Ustilaginoideae to accommodate this fungus. Four species previously misplaced in Ustilago (Ustilaginales, Basidiomycota) are transferred to Commelinaceomyces, including the type of the genus, C. aneilematis, on Murdannia keisak. This is the first report of a clavicipitaceous species infecting host plants in the Commelinaceae.
Collapse
Affiliation(s)
- Eiji Tanaka
- Ishikawa Prefectural University , 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Bhushan Shrestha
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University , Incheon 404-834, Republic of Korea
| | - Roger G Shivas
- Centre for Crop Health, University of Southern Queensland , Toowoomba 4350, Australia
| |
Collapse
|
15
|
Decreased Root-Knot Nematode Gall Formation in Roots of the Morning Glory Ipomoea tricolor Symbiotic with Ergot Alkaloid-Producing Fungal Periglandula Sp. J Chem Ecol 2019; 45:879-887. [PMID: 31686336 DOI: 10.1007/s10886-019-01109-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
Many species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor. The goal of this study was to determine if infection of I. tricolor by the Periglandula sp. endosymbiont affects Southern root-knot nematode (Meloidogyne incognita) gall formation and host plant biomass. We hypothesized that I. tricolor plants infected by Periglandula (E+) would develop fewer nematode-induced galls compared to non-symbiotic plants (E-). E+ or E- status of plant lines was confirmed by testing methanol extracts from individual seeds for endosymbiont-produced ergot alkaloids. To test the effects of Periglandula on nematode colonization, E+ and E- I. tricolor seedlings were grown in soil infested with high densities of M. incognita nematodes (N+) or no nematodes (N-) for four weeks in the greenhouse before harvesting. After harvest, nematode colonization of roots was visualized microscopically, and total gall number and plant biomass were quantified. Four ergot alkaloids were detected in roots of E+ plants, but no alkaloids were found in E- plants. Gall formation was reduced by 50% in E+ plants compared to E- plants, independent of root biomass. Both N+ plants and E+ plants had significantly reduced biomass compared to N- and E- plants, respectively. These results demonstrate Periglandula's defensive role against biotic enemies, albeit with a potential trade-off with host plant growth.
Collapse
|
16
|
Cook D, Lee ST, Panaccione DG, Leadmon CE, Clay K, Gardner DR. Biodiversity of Convolvulaceous species that contain Ergot Alkaloids, Indole Diterpene Alkaloids, and Swainsonine. BIOCHEM SYST ECOL 2019; 86. [PMID: 31496550 DOI: 10.1016/j.bse.2019.103921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Convolvulaceous species have been reported to contain several bioactive principles thought to be toxic to livestock including the calystegines, swainsonine, ergot alkaloids, and indole diterpene alkaloids. Swainsonine, ergot alkaloids, and indole diterpene alkaloids are produced by seed transmitted fungal symbionts associated with their respective plant host, while the calystegines are produced by the plant. To date, Ipomoea asarifolia and Ipomoea muelleri represent the only Ipomoea species and members of the Convolvulaceae known to contain indole diterpene alkaloids, however several other Convolvulaceous species are reported to contain ergot alkaloids. To further explore the biodiversity of species that may contain indole diterpenes, we analyzed several Convolvulaceous species (n=30) for indole diterpene alkaloids, representing four genera, Argyreia, Ipomoea, Stictocardia, and Turbina, that had been previously reported to contain ergot alkaloids. These species were also verified to contain ergot alkaloids and subsequently analyzed for swainsonine. Ergot alkaloids were detected in 18 species representing all four genera screened, indole diterpenes were detected in two Argyreia species and eight Ipomoea species of the 18 that contained ergot alkaloids, and swainsonine was detected in two Ipomoea species. The data suggest a strong association exists between the relationship of the Periglandula species associated with each host and the occurrence of the ergot alkaloids and/or the indole diterpenes reported here. Likewise there appears to be an association between the occurrence of the respective bioactive principle and the genetic relatedness of the respective host plant species.
Collapse
Affiliation(s)
- Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| | - Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| | - Daniel G Panaccione
- West Virginia University, Division of Plant and Soil Sciences, Morgantown, WV 26506, USA
| | - Caroline E Leadmon
- West Virginia University, Division of Plant and Soil Sciences, Morgantown, WV 26506, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| |
Collapse
|
17
|
Survival and development of potato psyllid (Hemiptera: Triozidae) on Convolvulaceae: Effects of a plant-fungus symbiosis (Periglandula). PLoS One 2018; 13:e0201506. [PMID: 30204748 PMCID: PMC6133269 DOI: 10.1371/journal.pone.0201506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 11/23/2022] Open
Abstract
Plant species in the family Solanaceae are the usual hosts of potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Psylloidea: Triozidae). However, the psyllid has also been shown to develop on some species of Convolvulaceae (bindweeds and morning glories). Developmental success on Convolvulaceae is surprising given the rarity of psyllid species worldwide associated with this plant family. We assayed 14 species of Convolvulaceae across four genera (Convolvulus, Calystegia, Ipomoea, Turbina) to identify species that allow development of potato psyllid. Two populations of psyllids were assayed (Texas, Washington). The Texas population overlaps extensively with native Convolvulaceae, whereas Washington State is noticeably lacking in Convolvulaceae. Results of assays were overlain on a phylogenetic analysis of plant species to examine whether Convolvulaceae distantly related to the typical host (potato) were less likely to allow development than species of Convolvulaceae more closely related. Survival was independent of psyllid population and location of the plant species on our phylogenetic tree. We then examined whether presence of a fungal symbiont of Convolvulaceae (Periglandula spp.) affected psyllid survival. These fungi associate with Convolvulaceae and produce a class of mycotoxins (ergot alkaloids) that may confer protection against plant-feeding arthropods. Periglandula was found in 11 of our 14 species, including in two genera (Convolvulus, Calystegia) not previously known to host the symbiont. Of these 11 species, leaf tissues from five contained large quantities of two classes of ergot alkaloids (clavines, amides of lysergic acid) when evaluated by LC-MS/MS. All five species also harbored Periglandula. No ergot alkaloids were detected in species free of the fungal symbiont. Potato psyllid rapidly died on the five species that harbored Periglandula and contained ergot alkaloids, but survived to adulthood on seven of the nine species in which ergot alkaloids were not detected. These results support the hypothesis that a plant-fungus symbiotic relationship affects the suitability of certain Convolvulaceae to potato psyllid.
Collapse
|
18
|
Píchová K, Pažoutová S, Kostovčík M, Chudíčková M, Stodůlková E, Novák P, Flieger M, van der Linde E, Kolařík M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Mol Phylogenet Evol 2018; 123:73-87. [PMID: 29481949 DOI: 10.1016/j.ympev.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium.
Collapse
Affiliation(s)
- Kamila Píchová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague, Czech Republic
| | - Sylvie Pažoutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Martin Kostovčík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Milada Chudíčková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Eva Stodůlková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Miroslav Flieger
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Elna van der Linde
- Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0121, South Africa
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
19
|
Riet-Correa F, Medeiros RM, Pfister JA, Mendonça FS. Toxic plants affecting the nervous system of ruminants and horses in Brazil. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017001200001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: This review updates information about neurotoxic plants affecting ruminants and equidae in Brazil. Currently in the country, there are at least 131 toxic plants belonging to 79 genera. Thirty one of these poisonous plants affect the nervous system. Swainsonine-containing plants (Ipomoea spp., Turbina cordata and Sida carpinifolia) cause numerous outbreaks of poisoning, mainly in goats, but cattle and horses are occasionally affected. The poisoning by Ipomoea asarifolia, a tremorgenic plant, is very common in sheep, goats and cattle in the Northeastern region and in the Marajo island. Poisoning by the pods of Prosopis juliflora are frequent in cattle in Northeastern Brazil; occasionally this poisoning affects goats and more rarely sheep. Some poisonings by plants, such as Hybanthus calceolaria, Ipomoea marcellia and Talisia esculenta in ruminants and Indigofera lespedezioides in horses were recently described and needs to be accurately investigated about its occurrence and importance. Other plants poisonings causing nervous signs in ruminants and equidae are less important, but should be considered for the differential diagnosis of neurologic diseases.
Collapse
Affiliation(s)
- Franklin Riet-Correa
- National Institute for Agriculture Research, Uruguay; Universidade Federal de Campina Grande, Brazil
| | | | | | | |
Collapse
|
20
|
|
21
|
Lee ST, Gardner DR, Cook D. Identification of Indole Diterpenes in Ipomoea asarifolia and Ipomoea muelleri, Plants Tremorgenic to Livestock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5266-5277. [PMID: 28571312 DOI: 10.1021/acs.jafc.7b01834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ipomoea asarifolia has been associated with a tremorgenic syndrome in livestock in Brazil and was recently reported to contain tremorgenic indole diterpenes. Ipomoea muelleri has been reported to cause a similar tremorgenic syndrome in livestock in Australia. Ipomoea asarifolia and I. muelleri were investigated by high-performance liquid chromatography-high-resolution mass spectometry (HPLC-HRMS) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for indole diterpene composition. The high-resolution mass spectrometric data in combination with MS/MS fragmentation mass spectral data provided valuable information for indole diterpene characterization. The previous report of indole diterpenes in I. asarifolia was confirmed and expanded; and the presence of indole diterpenes in I. muelleri is reported for the first time. Two new indole diterpenes were isolated and their structures determined by 1D and 2D NMR spectroscopy and given the names 11-hydroxy-12,13-epoxyterpendole K and 6,7-dehydroterpendole A. The presence of terpendole K and terpendole E in I. asarifolia is unequivocally demonstrated for the first time. This is the first detailed MS analysis of known indole diterpenes and possible isomers in I. asarifolia and I. muelleri.
Collapse
Affiliation(s)
- Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture , 1150 East, 1400 North, Logan, Utah 84341, United States
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture , 1150 East, 1400 North, Logan, Utah 84341, United States
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture , 1150 East, 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
22
|
Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen T, Wijayawardene NN. Families of Sordariomycetes. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0369-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
|
24
|
Beaulieu WT, Panaccione DG, Ryan KL, Kaonongbua W, Clay K. Phylogenetic and chemotypic diversity of Periglandula species in eight new morning glory hosts (Convolvulaceae). Mycologia 2015; 107:667-78. [PMID: 25977213 DOI: 10.3852/14-239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022]
Abstract
Periglandula ipomoeae and P. turbinae (Ascomycota, Clavicipitaceae) are recently described fungi that form symbiotic associations with the morning glories (Convolvulaceae) Ipomoea asarifolia and Turbina corymbosa, respectively. These Periglandula species are vertically transmitted and produce bioactive ergot alkaloids in seeds of infected plants and ephemeral mycelia on the adaxial surface of young leaves. Whether other morning glories that contain ergot alkaloids also are infected by Periglandula fungi is a central question. Here we report on a survey of eight species of Convolvulaceae (Argyreia nervosa, I. amnicola, I. argillicola, I. gracilis, I. hildebrandtii, I. leptophylla, I. muelleri, I. pes-caprae) for ergot alkaloids in seeds and associated clavicipitaceous fungi potentially responsible for their production. All host species contained ergot alkaloids in four distinct chemotypes with concentrations of 15.8-3223.0 μg/g. Each chemotype was a combination of four or five ergot alkaloids out of seven alkaloids detected across all hosts. In addition, each host species exhibited characteristic epiphytic mycelia on adaxial surfaces of young leaves with considerable interspecific differences in mycelial density. We sequenced three loci from fungi infecting each host: the nuclear rDNA internal transcribed spacer region (ITS), introns of the translation factor 1-α gene (tefA) and the dimethylallyl-tryptophan synthase gene (dmaW), which codes for the enzyme that catalyzes the first step in ergot alkaloid biosynthesis. Phylogenetic analyses confirmed that these fungi are in the family Clavicipitaceae and form a monophyletic group with the two described Periglandula species. This study is the first to report Periglandula spp. from Asian, Australian, African and North American species of Convolvulaceae, including host species with a shrub growth form and host species occurring outside of the tropics. This study demonstrates that ergot alkaloids in morning glories always co-occur with Periglandula spp. and that closely related Periglandula spp. produce alkaloid chemotypes more similar than more distantly related species.
Collapse
Affiliation(s)
- Wesley T Beaulieu
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, Indiana 47405
| | - Daniel G Panaccione
- Division of Plant & Soil Sciences, West Virginia University, 1090 Agricultural Sciences Building, Morgantown, West Virginia 26506-6108
| | - Katy L Ryan
- Division of Plant & Soil Sciences, West Virginia University, 1090 Agricultural Sciences Building, Morgantown, West Virginia 26506-6108
| | - Wittaya Kaonongbua
- Department of Microbiology, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140 Thailand
| | - Keith Clay
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
25
|
|
26
|
The key role of peltate glandular trichomes in symbiota comprising clavicipitaceous fungi of the genus periglandula and their host plants. Toxins (Basel) 2015; 7:1355-73. [PMID: 25894995 PMCID: PMC4417971 DOI: 10.3390/toxins7041355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 01/07/2023] Open
Abstract
Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.
Collapse
|
27
|
Thamhesl M, Apfelthaler E, Schwartz-Zimmermann HE, Kunz-Vekiru E, Krska R, Kneifel W, Schatzmayr G, Moll WD. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiol 2015; 15:73. [PMID: 25887091 PMCID: PMC4411749 DOI: 10.1186/s12866-015-0407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Conclusions Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
Collapse
Affiliation(s)
| | - Elisabeth Apfelthaler
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Heidi Elisabeth Schwartz-Zimmermann
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Elisavet Kunz-Vekiru
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Wolfgang Kneifel
- Christian Doppler Laboratory for Innovative Bran Biorefinery, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | | | | |
Collapse
|
28
|
Diversification of ergot alkaloids in natural and modified fungi. Toxins (Basel) 2015; 7:201-18. [PMID: 25609183 PMCID: PMC4303823 DOI: 10.3390/toxins7010201] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
Several fungi in two different families--the Clavicipitaceae and the Trichocomaceae--produce different profiles of ergot alkaloids, many of which are important in agriculture and medicine. All ergot alkaloid producers share early steps before their pathways diverge to produce different end products. EasA, an oxidoreductase of the old yellow enzyme class, has alternate activities in different fungi resulting in branching of the pathway. Enzymes beyond the branch point differ among lineages. In the Clavicipitaceae, diversity is generated by the presence or absence and activities of lysergyl peptide synthetases, which interact to make lysergic acid amides and ergopeptines. The range of ergopeptines in a fungus may be controlled by the presence of multiple peptide synthetases as well as by the specificity of individual peptide synthetase domains. In the Trichocomaceae, diversity is generated by the presence or absence of the prenyl transferase encoded by easL (also called fgaPT1). Moreover, relaxed specificity of EasL appears to contribute to ergot alkaloid diversification. The profile of ergot alkaloids observed within a fungus also is affected by a delayed flux of intermediates through the pathway, which results in an accumulation of intermediates or early pathway byproducts to concentrations comparable to that of the pathway end product.
Collapse
|
29
|
Poisoning by Ipomoea asarifolia in lambs by the ingestion of milk from ewes that ingest the plant. Toxicon 2014; 92:129-32. [DOI: 10.1016/j.toxicon.2014.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022]
|
30
|
Lopes JRG, Riet-Correa F, Cook D, Pfister JA, Medeiros RM. Elimination of the tremorgenic toxin of Ipomoea asarifolia by milk. PESQUISA VETERINARIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014001100009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim to determine if the tremorgenic toxin of Ipomoea asarifolia is eliminated in milk, three groups of Swiss female mice received, immediately after giving birth until weaning, a ration containing 20% or 30% of dry I. asarifolia. All the offspring of the females that received 20% or 30% I. asarifolia showed tremors 2-4 days after birth. The offspring of the females that received 20% I. asarifolia recovered 4-7 days after weaning. The offspring of the females that received 30% of the plant in the ration died while showing tremors before weaning or up to two days after weaning. It is concluded that the tremorgenic compound of I. asarifolia or its toxic metabolites are eliminated in milk, and that lactating mice may be used as a model for the determination of the toxic compound(s) in this plant.
Collapse
Affiliation(s)
| | | | - Daniel Cook
- United States Department of Agriculture, USA
| | | | | |
Collapse
|
31
|
Abstract
An update on new developments in the field of ergot alkaloid biosynthesis since 2011 is highlighted.
Collapse
Affiliation(s)
- Dorota Jakubczyk
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| | - Johnathan Z. Cheng
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| | - Sarah E. O'Connor
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| |
Collapse
|
32
|
Eserman LA, Tiley GP, Jarret RL, Leebens-Mack JH, Miller RE. Phylogenetics and diversification of morning glories (tribe Ipomoeeae, Convolvulaceae) based on whole plastome sequences. AMERICAN JOURNAL OF BOTANY 2014; 101:92-103. [PMID: 24375828 DOI: 10.3732/ajb.1300207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
PREMISE OF THE STUDY Morning glories are an emerging model system, and resolving phylogenetic relationships is critical for understanding their evolution. Phylogenetic studies demonstrated that the largest morning glory genus, Ipomoea, is not monophyletic, and nine other genera are derived from within Ipomoea. Therefore, systematic research is focused on the monophyletic tribe Ipomoeeae (ca. 650-900 species). We used whole plastomes to infer relationships across Ipomoeeae. METHODS Whole plastomes were sequenced for 29 morning glory species, representing major lineages. Phylogenies were estimated using alignments of 82 plastid genes and whole plastomes. Divergence times were estimated using three fossil calibration points. Finally, evolution of root architecture, flower color, and ergot alkaloid presence was examined. KEY RESULTS Phylogenies estimated from both data sets had nearly identical topologies. Phylogenetic results are generally consistent with prior phylogenetic hypotheses. Higher-level relationships with weak support in previous studies were recovered here with strong support. Molecular dating analysis suggests a late Eocene divergence time for the Ipomoeeae. The two clades within the tribe, Argyreiinae and Astripomoeinae, diversified at similar times. Reconstructed most recent common ancestor of the Ipomoeeae had blue flowers, an association with ergot-producing fungi, and either tuberous or fibrous roots. CONCLUSIONS Phylogenetic results provide confidence in relationships among Ipomoeeae lineages. Divergence time estimation results provide a temporal context for diversification of morning glories. Ancestral character reconstructions support previous findings that morning glory morphology is evolutionarily labile. Taken together, our study provides strong resolution of the morning glory phylogeny, which is broadly applicable to the evolution and ecology of these fascinating species.
Collapse
Affiliation(s)
- Lauren A Eserman
- Plant Biology Department, University of Georgia, Athens, Georgia 30602 USA
| | | | | | | | | |
Collapse
|
33
|
Differential allocation of seed-borne ergot alkaloids during early ontogeny of morning glories (Convolvulaceae). J Chem Ecol 2013; 39:919-30. [PMID: 23835852 DOI: 10.1007/s10886-013-0314-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/10/2023]
Abstract
Ergot alkaloids are mycotoxins that can increase host plant resistance to above- and below-ground herbivores. Some morning glories (Convolvulaceae) are infected by clavicipitaceous fungi (Periglandula spp.) that produce high concentrations of ergot alkaloids in seeds-up to 1000-fold greater than endophyte-infected grasses. Here, we evaluated the diversity and distribution of alkaloids in seeds and seedlings and variation in alkaloid distribution among species. We treated half the plants with fungicide to differentiate seed-borne alkaloids from alkaloids produced de novo post-germination and sampled seedling tissues at the cotyledon and first-leaf stages. Seed-borne alkaloids in Ipomoea amnicola, I. argillicola, and I. hildebrandtii remained primarily in the cotyledons, whereas I. tricolor allocated lysergic acid amides to the roots while retaining clavines in the cotyledons. In I. hildebrandtii, almost all festuclavine was found in the cotyledons. These observations suggest differential allocation of individual alkaloids. Intraspecific patterns of alkaloid distribution did not vary between fungicide-treated and control seedlings. Each species contained four to six unique ergot alkaloids and two species had the ergopeptine ergobalansine. De novo production of alkaloids did not begin immediately, as total alkaloids in fungicide-treated and control seedlings did not differ through the first-leaf stage, except in I. argillicola. In an extended time-course experiment with I. tricolor, de novo production was detected after the first-leaf stage. Our results demonstrate that allocation of seed-borne ergot alkaloids varies among species and tissues but is not altered by fungicide treatment. This variation may reflect a response to selection for defense against natural enemies.
Collapse
|
34
|
Wings S, Müller H, Berg G, Lamshöft M, Leistner E. A study of the bacterial community in the root system of the maytansine containing plant Putterlickia verrucosa. PHYTOCHEMISTRY 2013; 91:158-64. [PMID: 22795602 DOI: 10.1016/j.phytochem.2012.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Maytansinoid compounds are ansa antibiotics occurring in the bacterium Actinosynnema pretiosum, in mosses and in higher plants such as Putterlickia verrucosa (E. Meyer ex Sonder) Szyszyl. The disjunct occurrence of maytansinoids has led to the consideration that plant-associated bacteria may be responsible for the presence of maytansinoids in P. verrucosa plants. Investigation of the bacterial community of this plant by molecular methods led to the observation that A. pretiosum, a maytansine-producing bacterium, is likely to be an inhabitant of the rhizosphere and the endorhiza of P. verrucosa.
Collapse
Affiliation(s)
- Susanne Wings
- Institut fuer Pharmazeutische Biologie, Rheinische Friedrich Wilhelms-Universität, Bonn, Germany
| | | | | | | | | |
Collapse
|
35
|
Cook D, Beaulieu WT, Mott IW, Riet-Correa F, Gardner DR, Grum D, Pfister JA, Clay K, Marcolongo-Pereira C. Production of the alkaloid swainsonine by a fungal endosymbiont of the Ascomycete order Chaetothyriales in the host Ipomoea carnea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3797-3803. [PMID: 23547913 DOI: 10.1021/jf4008423] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Some plant species within the Convolvulaceae (morning glory family) from South America, Africa, and Australia cause a neurologic disease in grazing livestock caused by swainsonine. These convolvulaceous species including Ipomoea carnea contain the indolizidine alkaloid swainsonine, an inhibitor of α-mannosidase and mannosidase II, and polyhydroxy nortropane alkaloids, the calystegines which are glycosidase inhibitors. Swainsonine has been shown to be produced by a fungal endosymbiont in legumes of the Astragalus and Oxytropis genera, where it causes a similar neurologic disease in grazing livestock called locoism. Here we demonstrate that I. carnea plants are infected with a fungal endosymbiont that was cultured from its seeds and which produced swainsonine in pure culture but not the calystegines. The same fungal endosymbiont was detected by PCR and by culturing in I. carnea plants containing swainsonine. The fungal endosymbiont belongs to the Ascomycete order Chaetothyriales. Plants derived from fungicide-treated seeds lacked swainsonine, but calystegine concentrations were unaltered.
Collapse
Affiliation(s)
- Daniel Cook
- USDA/ARS Poisonous Plant Research Laboratory , 1150 East 1400 North, Logan, Utah 84341, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Panaccione DG, Beaulieu WT, Cook D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12076] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel G. Panaccione
- Division of Plant & Soil Sciences; West Virginia University; 1090 Agricultural Sciences Building Morgantown WV 26506-6108 USA
| | | | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory; Logan UT USA
| |
Collapse
|
37
|
Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O'Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 2013; 9:e1003323. [PMID: 23468653 PMCID: PMC3585121 DOI: 10.1371/journal.pgen.1003323] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023] Open
Abstract
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Collapse
|
38
|
Hulvová H, Galuszka P, Frébortová J, Frébort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol Adv 2013; 31:79-89. [DOI: 10.1016/j.biotechadv.2012.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 01/03/2023]
|
39
|
|
40
|
Ergoline alkaloids in convolvulaceous host plants originate from epibiotic clavicipitaceous fungi of the genus Periglandula. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2011.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Abstract
The ergot alkaloids are a family of secondary metabolites produced by a phylogenetically discontinuous group of fungi. Various members of the family are important in agriculture, where they accumulate in grain crops or forage grasses and adversely affect humans or animals who consume them. Other ergot alkaloids have been used clinically to treat a variety of diseases. Because of their significance in agriculture and medicine, the ability to detect and quantify these alkaloids from a variety of substrates is important. The primary analytical approach for these purposes has been high performance liquid chromatography. The ability to manipulate ergot alkaloid production in fungi, by transformation-mediated approaches, has been useful for studies on the biosynthesis of these alkaloids and may have practical application in agriculture and medicine. Such modifications have been informed by comparative genomic approaches, which have provided information on the gene clusters associated with ergot alkaloid biosynthesis.
Collapse
|
42
|
The genera of Hyphomycetes - 2011 update. Persoonia - Molecular Phylogeny and Evolution of Fungi 2011; 27:119-29. [PMID: 22403480 PMCID: PMC3251323 DOI: 10.3767/003158511x617435] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
This supplement to the taxonomic monograph The Genera of Hyphomycetes summarises information on 23 accepted new genera and c. 160 species described in 2011. These include three dematiaceous genera (Funbolia, Noosia, Pyrigemmula, all related to Dothideomycetes), a bulbil-producing genus, Spiroplana (Pleosporales), and two endophytic genera, the sterile Periglandula (Clavicipitaceae), and the hyaline, sympodial Micronematobotrys (Pyronemataceae). Slow-growing, morphologically-reduced, darkly pigmented fungi continue to be the source of new taxa, including the new genus Atramixtia (Dothioraceae). Eight new genera of darkly pigmented chlamydospore-like anamorphs were described from marine or subtidal environments (Glomerulispora, Halozoön, Hiogispora, Matsusporium, Moheitospora, Moleospora, Moromyces), mostly associated with subclades of the Lulworthiales. Several genera that are morphologically similar to but phylogenetically distinct from genera of the Capnodiales (Pseudopassalora, Scleroramularia) were introduced, as well as segregates from the classical concepts of Alternaria (Sinomyces), Chalara and Phialophora (Brachyalara, Infundichalara, Lasiadelphia), and Paecilomyces (Purpureocillium for the former Paecilomyces lilacinus complex). In addition, in anticipation of the new nomenclatural rules, newly configured formerly-teleomorph genera were proposed as segregates from classical hyphomycete genera in the Hypocreales, namely Acremonium (Cosmospora), Fusarium (Cyanonectria, Dialonectria, Geejayessia, Macroconia, Stylonectria), and Volutella (Pseudonectria) and the Trichocomaceae, Eurotiales, Penicillium (Talaromyces for the former Penicillium subg. Biverticillium). Standardized generic mini-diagnoses are provided for the accepted new genera, along with details of distribution, substrates, numbers of new species and phylogenetic affinities within the Dikarya. GenBank accession numbers for ITS DNA-barcodes are provided where available. New information on generic concepts of previously recognised genera, phylogenetic relationships, and corrections of factual errors are also included. Only two newly described genera, Fecundostilbum and Utrechtiana, seem to be synonyms of previously described genera.
Collapse
|
43
|
Yu X, Liu Y, Xie X, Zheng XD, Li SM. Biochemical characterization of indole prenyltransferases: filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus. J Biol Chem 2011; 287:1371-80. [PMID: 22123822 DOI: 10.1074/jbc.m111.317982] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with L-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of L-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. K(m) values of 5-dimethylallyltryptophan synthase were determined for L-tryptophan and DMAPP at 34 and 76 μM, respectively. Average turnover number (k(cat)) at 1.1 s(-1) was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for L-tryptophan at 25,588 s(-1)·M(-1) and for other 11 simple indole derivatives up to 1538 s(-1)·M(-1) provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Xia Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|