1
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Bai F, Cai C, Zhang T, Wang P, Shi L, Zhai L, Li H, Zhang L, Yao S. Genome-Based Analysis of Aspergillus niger Aggregate Species from China and Their Potential for Fumonisin B 2 and Ochratoxin A Production. Curr Microbiol 2022; 79:193. [PMID: 35579721 DOI: 10.1007/s00284-022-02876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Based on entire genome sequencing, this study focused on the classification of Aspergillus niger aggregation species and investigated their potential for fumonisin B2 (FB2) and ochratoxin A (OTA) production. In the current study, 22 strains were used, namely 17 A. niger strains, four A. welwitschiae strains, and one A. lacticoffeatus (a synonym of A. niger) strain. Traditional multigene phylogenetic analysis, average nucleotide identity analysis (ANI), and the whole-genome single-nucleotide polymorphism (SNP) analyses were used to reconfirm the taxonomic status of A. niger, A. welwitschiae, and A. lacticoffeatus. The ability of A. niger to produce FB2 and OTA on five culture substrates was determined, and the association between FB2 and OTA gene clusters and toxin-producing abilities was explored. The results revealed that the ANI method could distinguish A. niger from A. welwitschiae, with an ANI value of < 98%. The SNP-based phylogenetic analysis suggested that A. niger and A. welwitschiae were two independent phylogenetic species. The ANI, SNP, and multigene phylogenetic analysis supported previous findings that A. lacticoffeatus was a synonymous species of A. niger. Aspergillus niger strains exhibited the varied potential of producing FB2 and OTA on different culture media. The A. niger genome sequence analysis revealed no significant difference in fumonisin gene clusters between FB2-nonproducing isolates and FB2-producing isolates, and the integrity of the ochratoxin biosynthesis genes cluster was clearly associated with OTA production. In conclusion, gene sequencing can be useful in assessing A. niger's ability to produce OTA, but it cannot reliably predict its ability to produce FB2.
Collapse
Affiliation(s)
- Feirong Bai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Chengshan Cai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Tianci Zhang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Penghui Wang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Liang Shi
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Hui Li
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Lu Zhang
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China.
| |
Collapse
|
3
|
Ghadaksaz A, Nodoushan SM, Sedighian H, Behzadi E, Fooladi AAI. Evaluation of the Role of Probiotics As a New Strategy to Eliminate Microbial Toxins: a Review. Probiotics Antimicrob Proteins 2022; 14:224-237. [PMID: 35031968 DOI: 10.1007/s12602-021-09893-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
Probiotics are living microorganisms that have favorable effects on human and animal health. The most usual types of microorganisms recruited as probiotics are lactic acid bacteria (LAB) and bifidobacteria. To date, numerous utilizations of probiotics have been reported. In this paper, it is suggested that probiotic bacteria can be recruited to remove and degrade different types of toxins such as mycotoxins and algal toxins that damage host tissues and the immune system causing local and systemic infections. These microorganisms can remove toxins by disrupting, changing the permeability of the plasma membrane, producing metabolites, inhibiting the protein translation, hindering the binding to GTP binding proteins to GM1 receptors, or by preventing the interaction between toxins and adhesions. Here, we intend to review the mechanisms that probiotic bacteria use to eliminate and degrade microbial toxins.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mousavi Nodoushan
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran.
| |
Collapse
|
4
|
Kim HS, Lohmar JM, Busman M, Brown DW, Naumann TA, Divon HH, Lysøe E, Uhlig S, Proctor RH. Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genomics 2020; 21:510. [PMID: 32703172 PMCID: PMC7376913 DOI: 10.1186/s12864-020-06896-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.
Collapse
Affiliation(s)
- Hye-Seon Kim
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Jessica M Lohmar
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Mark Busman
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Daren W Brown
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Todd A Naumann
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Robert H Proctor
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA.
| |
Collapse
|
5
|
Ferrara M, Logrieco AF, Moretti A, Susca A. A loop-mediated isothermal amplification (LAMP) assay for rapid detection of fumonisin producing Aspergillus species. Food Microbiol 2020; 90:103469. [PMID: 32336366 DOI: 10.1016/j.fm.2020.103469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/11/2019] [Accepted: 02/19/2020] [Indexed: 11/25/2022]
Abstract
Fumonisins contamination of food commodities is a worldwide problem, especially for maize. The ability to produce fumonisinsis a trait of several species of Fusarium, mainly F. verticillioides and F. proliferatum on maize, and some Aspergillus species. A. niger and its sister species A. welwitschiae, can contribute to fumonisin B2 (FB2) accumulation in maize kernels, although to a lesser extent than fumonisin-producing Fusarium species. Fumonisins risk monitoring represents an effective strategy in the integrated approach for mycotoxin risk management and reduction. The availability of a user-friendlymolecular assay for the detection oftoxigenic fungal species represents a valuable tool in understanding and managing upcoming mycotoxin contamination. In this study, we developed a LAMP assay, based on the detection of fum10, for a rapid and specific molecular detection of FB2-producing A. niger and A. welwistchiae, potentially useful to perform monitoring directly "on site" in maize chain. Results showed that very low amounts of conidia are suitable to detect the presence of the target gene, thus providing information about the presence of FB2-producing Aspergillus species and the possible upcoming fumonisins contamination in maize. The assay was combined with a suitable protocol for "in field" crude DNA extraction and a colorimetric method for easy naked-eye evaluationof results, offering a reliable and user-friendly tool to support effective reduction strategies of mycotoxin contamination in crop management programs.
Collapse
Affiliation(s)
- Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Antonia Susca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| |
Collapse
|
6
|
Isolation and Identification of Aspergillus Section Nigri, and Genotype Associated with Ochratoxin A and Fumonisin B2 Production in Garlic Marketed in Brazil. Curr Microbiol 2020; 77:1150-1158. [DOI: 10.1007/s00284-020-01915-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/07/2020] [Indexed: 02/03/2023]
|
7
|
Gil-Serna J, García-Díaz M, Vázquez C, González-Jaén MT, Patiño B. Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiol 2019; 82:240-248. [PMID: 31027779 DOI: 10.1016/j.fm.2019.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/10/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
The Aspergillus niger aggregate contains 15 morphologically indistinguishable species which presence is related to ochratoxin A (OTA) and fumonisin B2 (FB2) contamination of foodstuffs. The taxonomy of this group was recently reevaluated and there is a need of new studies regarding the risk that these species might pose to food security. 258 isolates of A. niger aggregate obtained from a variety of products from Spain were classified by molecular methods being A. tubingensis the most frequently occurring (67.5%) followed by A. welwitschiae (19.4%) and A. niger (11.7%). Their potential ability to produce mycotoxins was evaluated by PCR protocols which allow a rapid detection of OTA and FB2 biosynthetic genes in their genomes. OTA production is not widespread in A. niger aggregate since only 17% of A. niger and 6% of A. welwitschiae isolates presented the complete biosynthetic cluster whereas the lack of the cluster was confirmed in all A. tubingensis isolates. On the other hand, A. niger and A. welwitschiae seem to be important FB2 producers with 97% and 29% of the isolates, respectively, presenting the complete cluster. The genes involved in OTA and FB2 were overexpressed in producing isolates and their expression was related to mycotoxin synthesis.
Collapse
Affiliation(s)
- Jéssica Gil-Serna
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain.
| | - Marta García-Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain
| | - Covadonga Vázquez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain
| | - María Teresa González-Jaén
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain
| | - Belén Patiño
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain
| |
Collapse
|
8
|
Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M. Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicol In Vitro 2018; 53:160-171. [DOI: 10.1016/j.tiv.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 01/25/2023]
|
9
|
Han X, Jiang H, Xu J, Zhang J, Li F. Dynamic Fumonisin B₂ Production by Aspergillus niger Intented Used in Food Industry in China. Toxins (Basel) 2017; 9:toxins9070217. [PMID: 28698485 PMCID: PMC5535164 DOI: 10.3390/toxins9070217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022] Open
Abstract
There are a total of 30 strains including 27 strains of Aspergillus niger intended used in Chinese food industry, two strains used as control and one strain isolated from corn for fumonisin (FB) production on 3 media. It was found that FB2 production by A. niger was function-dependent and highly related to culture media, as well as incubation time. All strains studied were unable to produce FB1 and FB3. Almost all strains were found to produce FB2 on corn, rice and wheat bran. Based on their intended use in the food industry, the higher level of FB2 producers were strains used for saccharifying enzyme (n = 13) production, followed by organic acid (n = 6), tannase (n = 7) and β-galactosidase (n = 1) production, with the FB2 mean level of 3553–10,270 μg/kg, 1059–12,036 μg/kg, 3–7 μg/kg and 2–4 μg/kg on corn, 5455–9241 μg/kg, 559–2190 μg/kg, 4–9 μg/kg and 6–10 μg/kg on rice, 5959–7709 μg/kg, 9491–17,339 μg/kg, 8–14 μg/kg and 120–222 μg/kg on wheat bran, respectively. Comparatively, strains of Fusarium verticillioide were capable of producing fumonins simultaneously with broader spectrum including FB1, FB2 and FB3, but at a much lower level. In conclusion, it is necessary to evaluate FB2 production by A. niger before intended use in the food processing industry.
Collapse
Affiliation(s)
- Xiaomin Han
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Hongru Jiang
- National Institute for Nutrition and Health, Chinese Centre for Disease Control and Prevention, Beijing 100050, China.
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Jing Zhang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
10
|
Susca A, Proctor RH, Morelli M, Haidukowski M, Gallo A, Logrieco AF, Moretti A. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins. Front Microbiol 2016; 7:1412. [PMID: 27667988 PMCID: PMC5016791 DOI: 10.3389/fmicb.2016.01412] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/25/2016] [Indexed: 11/21/2022] Open
Abstract
The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin.
Collapse
Affiliation(s)
- Antonia Susca
- Institute of Sciences of Food Production, National Research Council of Italy Bari, Italy
| | - Robert H Proctor
- United States Department of Agriculture-Agricultural Research Service National Center for Agricultural Utilization Research Peoria, IL, USA
| | - Massimiliano Morelli
- Institute for Sustainable Plant Protection, Institute for Sustainable Plant Protection, UOS Bari Bari, Italy
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council of Italy Bari, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, National Research Council of Italy Lecce, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy Bari, Italy
| |
Collapse
|
11
|
Massi FP, Sartori D, de Souza Ferranti L, Iamanaka BT, Taniwaki MH, Vieira MLC, Fungaro MHP. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae. Int J Food Microbiol 2016; 221:19-28. [DOI: 10.1016/j.ijfoodmicro.2016.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
|
12
|
Castellá G, Alborch L, Bragulat M, Cabañes F. Real time quantitative expression study of a polyketide synthase gene related to ochratoxin a biosynthesis in Aspergillus niger. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Gherbawy Y, Elhariry H, Kocsubé S, Bahobial A, Deeb BE, Altalhi A, Varga J, Vágvölgyi C. Molecular Characterization of BlackAspergillusSpecies from Onion and Their Potential for Ochratoxin A and Fumonisin B2 Production. Foodborne Pathog Dis 2015; 12:414-23. [DOI: 10.1089/fpd.2014.1870] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Youssuf Gherbawy
- Biological Sciences Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Botany Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Hesham Elhariry
- Biological Sciences Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Abdulaziz Bahobial
- Biological Sciences Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Bahig El Deeb
- Biological Sciences Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Botany Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Abdulla Altalhi
- Biological Sciences Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - János Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Olarte RA, Horn BW, Singh R, Carbone I. Sexual recombination in Aspergillus tubingensis. Mycologia 2015; 107:307-12. [PMID: 25572097 DOI: 10.3852/14-233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aspergillus tubingensis from section Nigri (black Aspergilli) is closely related to A. niger and is used extensively in the industrial production of enzymes and organic acids. We recently discovered sexual reproduction in A. tubingensis, and in this study we demonstrate that the progeny are products of meiosis. Progeny were obtained from six crosses involving five MAT1-1 strains and two MAT1-2 strains. We examined three loci, including mating type (MAT), RNA polymerase II (RPB2) and β-tubulin (BT2), and found that 84% (58/69) of progeny were recombinants. Recombination associated with sexual reproduction in A. tubingensis provides a new option for the genetic improvement of industrial strains for enzyme and organic acid production.
Collapse
Affiliation(s)
- Rodrigo A Olarte
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Bruce W Horn
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, Georgia 39842
| | - Rakhi Singh
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
15
|
Susca A, Proctor RH, Butchko RA, Haidukowski M, Stea G, Logrieco A, Moretti A. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genet Biol 2014; 73:39-52. [DOI: 10.1016/j.fgb.2014.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 01/13/2023]
|
16
|
Susca A, Moretti A, Stea G, Villani A, Haidukowski M, Logrieco A, Munkvold G. Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy. Int J Food Microbiol 2014; 188:75-82. [PMID: 25087207 DOI: 10.1016/j.ijfoodmicro.2014.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022]
Abstract
Fumonisin contamination of maize is considered a serious problem in most maize-growing regions of the world, due to the widespread occurrence of these mycotoxins and their association with toxicosis in livestock and humans. Fumonisins are produced primarily by species of Fusarium that are common in maize grain, but also by some species of Aspergillus sect. Nigri, which can also occur on maize kernels as opportunistic pathogens. Understanding the origin of fumonisin contamination in maize is a key component in developing effective management strategies. Although some fungi in Aspergillus sect. Nigri are known to produce fumonisins, little is known about the species which are common in maize and whether they make a measurable contribution to fumonisin contamination of maize grain. In this work, we evaluated populations of Aspergillus sect. Nigri isolated from maize in USA and Italy, focusing on analysis of housekeeping genes, the fum8 gene and in vitro capability of producing fumonisins. DNA sequencing was used to identify Aspergillus strains belonging to sect. Nigri, in order to compare species composition between the two populations, which might influence specific mycotoxicological risks. Combined beta-tubulin/calmodulin sequences were used to genetically characterize 300 strains (199 from Italy and 101 from USA) which grouped into 4 clades: Aspergillus welwitschiae (syn. Aspergillus awamori, 14.7%), Aspergillus tubingensis (37.0%) and Aspergillus niger group 1 (6.7%) and group 2 (41.3%). Only one strain was identified as Aspergillus carbonarius. Species composition differed between the two populations; A. niger predominated among the USA isolates (69%), but comprised a smaller percentage (38%) of Italian isolates. Conversely, A. tubingensis and A. welwitschiae occurred at higher frequencies in the Italian population (42% and 20%, respectively) than in the USA population (27% and 5%). The evaluation of FB2 production on CY20S agar revealed 118 FB2 producing and 84 non-producing strains distributed among the clades: A. welwitschiae, A. niger group 1 and A. niger group 2, confirming the potential of Aspergillus sect. Nigri species to contribute to total fumonisin contamination of maize. A higher percentage of A. niger isolates (72.0%) produced FB2 compared to A. welwitschiae (36.6%). The percentage of FB2-producing A. niger strains was similar in the USA and Italian populations; however, the predominance of A. niger in the USA population suggests a higher potential for fumonisin production. Some strains with fum8 present in the genome did not produce FB2in vitro, confirming the ineffectiveness of fum8 presence as a predictor of FB2 production.
Collapse
Affiliation(s)
- Antonia Susca
- CNR (Research National Council), ISPA Institute of Sciences of Food Production, Bari, Italy
| | - Antonio Moretti
- CNR (Research National Council), ISPA Institute of Sciences of Food Production, Bari, Italy
| | - Gaetano Stea
- CNR (Research National Council), ISPA Institute of Sciences of Food Production, Bari, Italy
| | - Alessandra Villani
- CNR (Research National Council), ISPA Institute of Sciences of Food Production, Bari, Italy
| | - Miriam Haidukowski
- CNR (Research National Council), ISPA Institute of Sciences of Food Production, Bari, Italy
| | - Antonio Logrieco
- CNR (Research National Council), ISPA Institute of Sciences of Food Production, Bari, Italy
| | - Gary Munkvold
- Iowa State University, Dept. of Plant Pathology and Microbiology, Ames, IA 50011, United States.
| |
Collapse
|
17
|
Logrieco A, Haidukowski M, Susca A, Mulè G, Munkvold G, Moretti A. AspergillussectionNigrias contributor of fumonisin B2contamination in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:149-55. [DOI: 10.1080/19440049.2013.862349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Moretti A, Susca A, Mulé G, Logrieco AF, Proctor RH. Molecular biodiversity of mycotoxigenic fungi that threaten food safety. Int J Food Microbiol 2013; 167:57-66. [PMID: 23859402 DOI: 10.1016/j.ijfoodmicro.2013.06.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023]
Abstract
Fungal biodiversity is one of the most important contributors to the occurrence and severity of mycotoxin contamination of crop plants. Phenotypic and metabolic plasticity has enabled mycotoxigenic fungi to colonize a broad range of agriculturally important crops and to adapt to a range of environmental conditions. New mycotoxin-commodity combinations provide evidence for the ability of fungi to adapt to changing conditions and the emergence of genotypes that confer enhanced aggressiveness toward plants and/or altered mycotoxin production profiles. Perhaps the most important contributor to qualitative differences in mycotoxin production among fungi is variation in mycotoxin biosynthetic genes. Molecular genetic and biochemical analyses of toxigenic fungi have elucidated specific differences in biosynthetic genes that are responsible for intra- and inter-specific differences in mycotoxin production. For Aspergillus and Fusarium, the mycotoxigenic genera of greatest concern, variation in biosynthetic genes responsible for production of individual families of mycotoxins appears to be the result of evolutionary adaptation. Examples of such variation have been reported for: a) aflatoxin biosynthetic genes in Aspergillus flavus and Aspergillus parasiticus; b) trichothecene biosynthetic genes within and among Fusarium species; and c) fumonisin biosynthetic genes in Aspergillus and Fusarium species. Understanding the variation in these biosynthetic genes and the basis for variation in mycotoxin production is important for accurate assessment of the risks that fungi pose to food safety and for prevention of mycotoxin contamination of crops in the field and in storage.
Collapse
Affiliation(s)
- A Moretti
- Institute of Sciences of Food Production, CNR, Bari, Italy.
| | | | | | | | | |
Collapse
|