1
|
van der Stegen SJC, Lindenbergh PL, Petrovic RM, Xie H, Diop MP, Alexeeva V, Shi Y, Mansilla-Soto J, Hamieh M, Eyquem J, Cabriolu A, Wang X, Abujarour R, Lee T, Clarke R, Valamehr B, Themeli M, Riviere I, Sadelain M. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat Biomed Eng 2022; 6:1284-1297. [PMID: 35941192 PMCID: PMC9669107 DOI: 10.1038/s41551-022-00915-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
Abstract
The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αβ+ CAR T cells that perform similarly to CD8αβ+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αβ+ T cells for a broad range of immunotherapies.
Collapse
Affiliation(s)
- Sjoukje J C van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pieter L Lindenbergh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Roseanna M Petrovic
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyao Xie
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mame P Diop
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Alexeeva
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Eyquem
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tom Lee
- Fate Therapeutics Inc, San Diego, CA, USA
| | | | | | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Dong X, Liang Z, Zhang J, Zhang Q, Xu Y, Zhang Z, Zhang L, Zhang B, Zhao Y. Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis. Eur J Immunol 2022; 52:1789-1804. [PMID: 35908180 DOI: 10.1002/eji.202249915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Thymic epithelial cells (TECs) are important for T cell development and immune tolerance establishment. Although comprehensive molecular regulation of TEC development has been studied, the role of transport protein particle complexes (Trappcs) in TECs is not clear. Using TEC-specific homozygous or heterozygous Trappc1 deleted mice model, we found that Trappc1 deficiency caused severe thymus atrophy with decreased cell number and blocked maturation of TECs. Mice with a TEC-specific Trappc1 deletion show poor thymic T cell output and have a greater percentage of activated/memory T cells, suffered from spontaneous autoimmune disorders. Our RNA-seq and molecular studies indicated that the decreased endoplasmic reticulum (ER) and Golgi apparatus, enhanced unfolded protein response (UPR) and subsequent Atf4-CHOP-mediated apoptosis, and reactive oxygen species (ROS)-mediated ferroptosis coordinately contributed to the reduction of Trappc1-deleted TECs. Additionally, reduced Aire+ mTECs accompanied by the decreased expression of Irf4, Irf8, and Tbx21 in Trappc1 deficiency mTECs, may further coordinately block the tissue-restricted antigen expression. In this study, we reveal that Trappc1 plays an indispensable role in TEC development and maturation and provide evidence for the importance of inter-organelle traffic and ER homeostasis in TEC development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases and Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| |
Collapse
|
3
|
Lim YS, Lee DY, Kim HY, Ok Y, Hwang S, Moon Y, Yoon S. Descriptive and functional characterization of epidermal growth factor‑like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks. Int J Mol Med 2021; 47:4. [PMID: 33448309 PMCID: PMC7834963 DOI: 10.3892/ijmm.2020.4837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor-like domain 8 (EGFL8), a newly identified member of the EGFL family, and plays negative regulatory roles in mouse thymic epithelial cells (TECs) and thymocytes. However, the role of EGFL8 in these cells remains poorly understood. In the present study, in order to characterize the function of EGFL8, genome-wide expression profiles in EGFL8-overexpressing or -silenced mouse cortical TECs (cTECs) were analyzed. Microarray analysis revealed that 458 genes exhibited a >2-fold change in expression levels in the EGFL8-overexpressing vs. the EGFL8-silenced cTECs. Several genes involved in a number of cellular processes, such as the cell cycle, proliferation, growth, migration and differentiation, as well as in apoptosis, reactive oxygen species generation, chemotaxis and immune responses, were differentially expressed in the EGFL8-overexpressing or -silenced cTECs. WST-1 analysis revealed that that the overexpression of EGFL8 inhibited cTEC proliferation. To investigate the underlying mechanisms of EGFL8 in the regulation of cTEC function, genes related to essential cellular functions were selected. Reverse transcription-polymerase chain reaction analysis revealed that EGFL8 knockdown upregulated the expression of cluster differentiation 74 (CD74), Fas ligand (FasL), C-X-C motif chemokine ligand 5 (CXCL5), CXCL10, CXCL16, C-C motif chemokine ligand 20 (CCL20), vascular endothelial growth factor-A (VEGF-A), interferon regulatory factor 7 (Irf7), insulin-like growth factor binding protein-4 (IGFBP-4), thrombospondin 1 (Thbs1) and nuclear factor κB subunit 2 (NF-κB2) genes, and downregulated the expression of angiopoietin-like 1 (Angptl1), and neuropilin-1 (Nrp1) genes. Additionally, EGFL8 silencing enhanced the expression of anti-apoptotic molecules, such as B-cell lymphoma-2 (Bcl-2) and Bcl-extra large (Bcl-xL), and that of cell cycle-regulating molecules, such as cyclin-dependent kinase 1 (CDK1), CDK4, CDK6 and cyclin D1. Moreover, gene network analysis revealed that EGFL8 exerted negative effects on VEGF-A gene expression. Hence, the altered expression of several genes associated with EGFL8 expression in cTECs highlights the important physiological processes in which EGFL8 is involved, and provides insight into its biological functions.
Collapse
Affiliation(s)
- Ye Seon Lim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Do-Young Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Hye-Yoon Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Yejin Ok
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Seonyeong Hwang
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Yuseok Moon
- Immune Reconstitution Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| |
Collapse
|
4
|
Haymaker C, Yang Y, Wang J, Zou Q, Sahoo A, Alekseev A, Singh D, Ritthipichai K, Hailemichael Y, Hoang ON, Qin H, Schluns KS, Wang T, Overwijk WW, Sun SC, Bernatchez C, Kwak LW, Neelapu SS, Nurieva R. Absence of Grail promotes CD8 + T cell anti-tumour activity. Nat Commun 2017; 8:239. [PMID: 28798332 PMCID: PMC5552797 DOI: 10.1038/s41467-017-00252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
T-cell tolerance is a major obstacle to successful cancer immunotherapy; thus, developing strategies to break immune tolerance is a high priority. Here we show that expression of the E3 ubiquitin ligase Grail is upregulated in CD8+ T cells that have infiltrated into transplanted lymphoma tumours, and Grail deficiency confers long-term tumour control. Importantly, therapeutic transfer of Grail-deficient CD8+ T cells is sufficient to repress established tumours. Mechanistically, loss of Grail enhances anti-tumour reactivity and functionality of CD8+ T cells. In addition, Grail-deficient CD8+ T cells have increased IL-21 receptor (IL-21R) expression and hyperresponsiveness to IL-21 signalling as Grail promotes IL-21R ubiquitination and degradation. Moreover, CD8+ T cells isolated from lymphoma patients express higher levels of Grail and lower levels of IL-21R, compared with CD8+ T cells from normal donors. Our data demonstrate that Grail is a crucial factor controlling CD8+ T-cell function and is a potential target to improve cytotoxic T-cell activity.Grail is an E3 ubiquitin ligase that inhibits T-cell receptor signalling in CD4+ T cells. Here the authors show Grail also limits IL-21 receptor expression and function in CD8+ T cells, is overactive in these cells in patients with lymphoma, and promotes tumour development in a lymphoma transplant mouse model.
Collapse
Affiliation(s)
- Cara Haymaker
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yi Yang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Radiation Oncology, The Second Hospital of Jilin University, No. 218 Ziqiang St., Changchun City, Jilin Province, 130041, China
| | - Junmei Wang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Qiang Zou
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anupama Sahoo
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Andrei Alekseev
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Divyendu Singh
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Krit Ritthipichai
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Oanh N Hoang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hong Qin
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Toni Stephenson Lymphoma Center, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Kimberly S Schluns
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, No. 218 Ziqiang St., Changchun City, Jilin Province, 130041, China
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Larry W Kwak
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Toni Stephenson Lymphoma Center, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Roza Nurieva
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015; 5:117. [PMID: 26106583 PMCID: PMC4459101 DOI: 10.3389/fonc.2015.00117] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| |
Collapse
|
6
|
Jung WS, Han SM, Kim SM, Kim ME, Lee JS, Seo KW, Youn HY, Lee HW. Stimulatory effect of HGF-overexpressing adipose tissue-derived mesenchymal stem cells on thymus regeneration in a rat thymus involution model. Cell Biol Int 2014; 38:1106-17. [DOI: 10.1002/cbin.10306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Woo-Sung Jung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Sei-Myoung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Sung-Min Kim
- Division of Magnetic Resonance Research; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Mi-Eun Kim
- Department of Biology, College of Natural Sciences; Chosun University; Gwangju Republic of Korea
| | - Jun-Sik Lee
- Department of Biology, College of Natural Sciences; Chosun University; Gwangju Republic of Korea
| | - Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Chungnam National University; 99 Daehakro Yuseoung gu Daejon 305-764 Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Hee-Woo Lee
- Research Institute for Veterinary Science, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| |
Collapse
|
7
|
Ferreira C, Palmer D, Blake K, Garden OA, Dyson J. Reduced regulatory T cell diversity in NOD mice is linked to early events in the thymus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4145-52. [PMID: 24663675 DOI: 10.4049/jimmunol.1301600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thymic natural regulatory T cell (Treg) compartment of NOD mice is unusual in having reduced TCR diversity despite normal cellularity. In this study, we show that this phenotype is attributable to perturbations in early and late stages of thymocyte development and is controlled, at least in part, by the NOD Idd9 region on chromosome 4. Progression from double negative 1 to double negative 2 stage thymocytes in NOD mice is inefficient; however, this defect is compensated by increased proliferation of natural Tregs (nTregs) within the single positive CD4 thymocyte compartment, accounting for recovery of cellularity accompanied by loss of TCR diversity. This region also underlies the known attenuation of ERK-MAPK signaling, which may preferentially disadvantage nTreg selection. Interestingly, the same genetic region also regulates the rate of thymic involution that is accelerated in NOD mice. These findings highlight further complexity in the control of nTreg repertoire diversity.
Collapse
Affiliation(s)
- Cristina Ferreira
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Yoon TD, Lee HW, Kim YS, Choi HJ, Moon JO, Yoon S. Identification and analysis of expressed genes using a cDNA library from rat thymus during regeneration following cyclophosphamide-induced T cell depletion. Int J Mol Med 2013; 31:731-9. [PMID: 23314113 DOI: 10.3892/ijmm.2013.1238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/12/2012] [Indexed: 11/05/2022] Open
Abstract
Understanding the mechanisms of thymus regeneration is necessary for designing strategies to enhance host immunity when immune function is suppressed due to T cell depletion. In this study, expressed sequence tag (EST) analysis was performed following generation of a regenerating thymus cDNA library to identify genes expressed in thymus regeneration. A total of 1,000 ESTs were analyzed, of which 770 (77%) matched to known genes, 178 matched to unknown genes (17.8%) and 52 (5.2%) did not match any known sequences. The ESTs matched to known genes were grouped into eight functional categories: gene/protein synthesis (28%), metabolism (24%), cell signaling and communication (17%), cell structure and motility (6%), cell/organism defense and homeostasis (6%), cell division (3%), cell death/apoptosis (2%), and unclassified genes (14%). Based on the data of RT-PCR analysis, the expression of TLP, E2IG2, pincher, Paip2, TGF-β1, 4-1BB and laminin α3 genes was increased during thymus regeneration. These results provide extensive molecular information, for the first time, on thymus regeneration indicating that the regenerating thymus cDNA library may be a useful source for identifying various genes expressed during thymus regeneration.
Collapse
Affiliation(s)
- Tae-Deuk Yoon
- Department of Anatomy, Pusan National University, School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | | | | | | | | | | |
Collapse
|
9
|
Park HY, Han MH, Kim GY, Kim ND, Nam TJ, Choi YH. Inhibitory effects of glycoprotein isolated from Laminaria japonica on lipopolysaccharide-induced pro-inflammatory mediators in BV2 microglial cells. J Food Sci 2011; 76:T156-62. [PMID: 21806609 DOI: 10.1111/j.1750-3841.2011.02287.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic microglial activation endangers neuronal survival through release of various toxic pro-inflammatory molecules; therefore, negative regulators of microglial activation have been identified as potential therapeutic candidates for use in treatment of many neurological diseases. In this study, we conducted an investigation of the inhibitory effects of glycoprotein isolated from Laminaria japonica (LJGP) on production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators in BV2 microglial cells. Data from the study indicated that treatment with LJGP resulted in significant inhibition of excessive production of nitric oxide and prostaglandin E(2) in LPS-stimulated BV2 cells. LJGP also attenuated expression of inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines, including interleukin-1β and tumor necrosis factor-α. In addition, LJGP exhibited anti-inflammatory properties by suppression of nuclear factor-kappaB activation and downregulation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt pathways. These findings suggest LJGP may provide neuroprotection through suppression of the proinflammatory pathway in activated microglia.
Collapse
Affiliation(s)
- Hye-Young Park
- Dept of Pharmacy, Pusan Natl Univ, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Lee EN, Park JK, Lee JR, Oh SO, Baek SY, Kim BS, Yoon S. Characterization of the expression of cytokeratins 5, 8, and 14 in mouse thymic epithelial cells during thymus regeneration following acute thymic involution. Anat Cell Biol 2011; 44:14-24. [PMID: 21519545 PMCID: PMC3080004 DOI: 10.5115/acb.2011.44.1.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 01/11/2023] Open
Abstract
The thymus is a central lymphoid organ for T cell development. Thymic epithelial cells (TECs) constitute a major component of the thymic stroma, which provides a specialized microenvironment for survival, proliferation, and differentiation of immature T cells. In this study, subsets of TECs were examined immunohistochemically to investigate their cytokeratin (CK) expression patterns during thymus regeneration following thymic involution induced by cyclophosphamide treatment. The results demonstrated that both normal and regenerating mouse thymuses showed a similar CK expression pattern. The major medullary TECs (mTEC) subset, which is stellate in appearance, exhibited CK5 and CK14 staining, and the minor mTEC subset, which is globular in appearance, exhibited CK8 staining, whereas the vast majority of cortical TECs (cTECs) expressed CK8 during thymus regeneration. Remarkably, the levels of CK5 and CK14 expression were enhanced in mTECs, and CK8 expression was upregulated in cTECs during mouse thymus regeneration after cyclophosphamide-induced acute thymic involution. Of special interest, a relatively high number of CK5+CK8+ TEC progenitors occurred in the thymic cortex during thymus regeneration. Taken together, these findings shed more light on the role of CK5, CK8, and CK14 in the physiology of TECs during mouse thymus regeneration, and on the characterization of TEC progenitors for restoration of the epithelial network and for concomitant regeneration of the adult thymus.
Collapse
Affiliation(s)
- Eun Na Lee
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | | | | | | | | | | | | |
Collapse
|