1
|
Yang J, Pei T, Su G, Duan P, Liu X. AnnexinA6: a potential therapeutic target gene for extracellular matrix mineralization. Front Cell Dev Biol 2023; 11:1201200. [PMID: 37727505 PMCID: PMC10506415 DOI: 10.3389/fcell.2023.1201200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
The mineralization of the extracellular matrix (ECM) is an essential and crucial process for physiological bone formation and pathological calcification. The abnormal function of ECM mineralization contributes to the worldwide risk of developing mineralization-related diseases; for instance, vascular calcification is attributed to the hyperfunction of ECM mineralization, while osteoporosis is due to hypofunction. AnnexinA6 (AnxA6), a Ca2+-dependent phospholipid-binding protein, has been extensively reported as an essential target in mineralization-related diseases such as osteoporosis, osteoarthritis, atherosclerosis, osteosarcoma, and calcific aortic valve disease. To date, AnxA6, as the largest member of the Annexin family, has attracted much attention due to its significant contribution to matrix vesicles (MVs) production and release, MVs-ECM interaction, cytoplasmic Ca2+ influx, and maturation of hydroxyapatite, making it an essential target in ECM mineralization. In this review, we outlined the recent advancements in the role of AnxA6 in mineralization-related diseases and the potential mechanisms of AnxA6 under normal and mineralization-related pathological conditions. AnxA6 could promote ECM mineralization for bone regeneration in the manner described previously. Therefore, AnxA6 may be a potential osteogenic target for ECM mineralization.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Annexin A6 Polymorphism Is Associated with Pro-atherogenic Lipid Profiles and with the Downregulation of Methotrexate on Anti-Atherogenic Lipid Profiles in Psoriasis. J Clin Med 2022; 11:jcm11237059. [PMID: 36498634 PMCID: PMC9737844 DOI: 10.3390/jcm11237059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Annexin A6 (AnxA6) is a lipid-binding protein that regulates cholesterol homeostasis and secretory pathways. However, the correlation of AnxA6 polymorphism with lipometabolism has never been studied in psoriasis. OBJECTIVES To investigate the impact of AnxA6 polymorphism on lipid profiles and the expression of AnxA6 protein in both peripheral blood mononuclear cells (PBMCs) and lipometabolism in psoriasis. METHODS A total of 265 psoriatic patients received methotrexate (MTX) treatment for 12 weeks, after which their lipid profiles were determined by measuring total cholesterol (TC), triglycerides (TGs), lipoprotein (a) [LP(a)], high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL), apolipoprotein (a)1 (ApoA1), and apolipoprotein B (ApoB). In addition, AnxA6 (rs11960458) was genotyped in 262 patients and the expression of AnxA6 in PBMCs was measured by Western blotting at baseline and week 8 post-MTX treatment. RESULTS The CC genotype carriers of rs11960458 had a lower expression of AnxA6 and lower levels of the pro-atherogenic lipids TC, LDL, and ApoB compared to TC genotype carriers. MTX significantly downregulated the levels of the anti-atherogenic lipids HDL-C and ApoA1 and the level of AnxA6 in TC genotype carriers, as well as the level of TGs in CC genotype carriers. CONCLUSIONS The polymorphism of AnxA6, rs11960458, was statistically associated with the levels of pro-atherogenic lipids and with the downregulation of MTX on the levels of anti-atherogenic lipids and TGs in psoriasis.
Collapse
|
3
|
Grewal T, Enrich C, Rentero C, Buechler C. Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019; 20:ijms20143449. [PMID: 31337068 PMCID: PMC6678658 DOI: 10.3390/ijms20143449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and the associated comorbidities are a growing health threat worldwide. Adipose tissue dysfunction, impaired adipokine activity, and inflammation are central to metabolic diseases related to obesity. In particular, the excess storage of lipids in adipose tissues disturbs cellular homeostasis. Amongst others, organelle function and cell signaling, often related to the altered composition of specialized membrane microdomains (lipid rafts), are affected. Within this context, the conserved family of annexins are well known to associate with membranes in a calcium (Ca2+)- and phospholipid-dependent manner in order to regulate membrane-related events, such as trafficking in endo- and exocytosis and membrane microdomain organization. These multiple activities of annexins are facilitated through their diverse interactions with a plethora of lipids and proteins, often in different cellular locations and with consequences for the activity of receptors, transporters, metabolic enzymes, and signaling complexes. While increasing evidence points at the function of annexins in lipid homeostasis and cell metabolism in various cells and organs, their role in adipose tissue, obesity and related metabolic diseases is still not well understood. Annexin A1 (AnxA1) is a potent pro-resolving mediator affecting the regulation of body weight and metabolic health. Relevant for glucose metabolism and fatty acid uptake in adipose tissue, several studies suggest AnxA2 to contribute to coordinate glucose transporter type 4 (GLUT4) translocation and to associate with the fatty acid transporter CD36. On the other hand, AnxA6 has been linked to the control of adipocyte lipolysis and adiponectin release. In addition, several other annexins are expressed in fat tissues, yet their roles in adipocytes are less well examined. The current review article summarizes studies on the expression of annexins in adipocytes and in obesity. Research efforts investigating the potential role of annexins in fat tissue relevant to health and metabolic disease are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carles Rentero
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Luo J, Jiang L, Yang H, Song BL. Routes and mechanisms of post-endosomal cholesterol trafficking: A story that never ends. Traffic 2017; 18:209-217. [DOI: 10.1111/tra.12471] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Luyi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| |
Collapse
|
5
|
Krautbauer S, Haberl EM, Eisinger K, Pohl R, Rein-Fischboeck L, Rentero C, Alvarez-Guaita A, Enrich C, Grewal T, Buechler C, Neumeier M. Annexin A6 regulates adipocyte lipid storage and adiponectin release. Mol Cell Endocrinol 2017; 439:419-430. [PMID: 27702590 DOI: 10.1016/j.mce.2016.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022]
Abstract
Lipid storage and adipokine secretion are critical features of adipocytes. Annexin A6 (AnxA6) is a lipid-binding protein regulating secretory pathways and its role in adiponectin release was examined. The siRNA-mediated AnxA6 knock-down in 3T3-L1 preadipocytes impaired proliferation, and differentiation of AnxA6-depleted cells to mature adipocytes was associated with higher soluble adiponectin and increased triglyceride storage. The latter was partly attributed to reduced lipolysis. Accordingly, AnxA6 overexpression in 3T3-L1 adipocytes lowered cellular triglycerides and adiponectin secretion. Indeed, serum adiponectin was increased in AnxA6 deficient mice. Expression analysis identified AnxA6 protein to be more abundant in intra-abdominal compared to subcutaneous adipose tissues of mice and men. AnxA6 protein levels increased in white adipose tissues of obese mice and here, levels were highest in subcutaneous fat. AnxA6 protein in adipocytes was upregulated by oxidative stress which might trigger AnxA6 induction in adipose tissues and contribute to impaired fat storage and adiponectin release.
Collapse
Affiliation(s)
- Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Carles Rentero
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Markus Neumeier
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| |
Collapse
|
6
|
Meier EM, Rein-Fischboeck L, Pohl R, Wanninger J, Hoy AJ, Grewal T, Eisinger K, Krautbauer S, Liebisch G, Weiss TS, Buechler C. Annexin A6 protein is downregulated in human hepatocellular carcinoma. Mol Cell Biochem 2016; 418:81-90. [PMID: 27334756 DOI: 10.1007/s11010-016-2735-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Annexin A6 (AnxA6) is a lipid-binding protein highly expressed in the liver, regulating cholesterol homeostasis and signaling pathways with a role in liver physiology. Here, we analyzed whether hepatic AnxA6 levels are affected by pathological conditions that are associated with liver dysfunction and liver injury. AnxA6 levels in the fatty liver of mice fed a high-fat diet, in ob/ob and db/db animals and in human fatty liver are comparable to controls. Similarly, AnxA6 levels appear unaffected in murine nonalcoholic steatohepatitis and human liver fibrosis. Accordingly, adiponectin, lysophosphatidylcholine, palmitate, and TGFbeta, all of which have a role in liver injury, do not affect AnxA6 expression in human hepatocytes. Likewise, adiponectin and IL8 do not alter AnxA6 levels in primary human hepatic stellate cells. However, in hepatic tumors of 18 patients, AnxA6 protein levels are substantially reduced compared to nontumorous tissues. AnxA6 mRNA is even increased in the tumors suggesting that posttranscriptional mechanisms are involved herein. Lipidomic analysis shows trends toward elevated cholesteryl ester and sphingomyelin in the tumor samples, yet the ratio of tumor to nontumorous AnxA6 does not correlate with these lipids. The current study shows that AnxA6 is specifically reduced in human hepatocellular carcinoma suggesting a role of this protein in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Elisabeth M Meier
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Andrew J Hoy
- Department of Physiology, School of Medical Sciences and Bosch Institute, Sydney Medical School, Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Thomas S Weiss
- Regensburg University Hospital, University Children Hospital (KUNO), Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.
| |
Collapse
|
7
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
8
|
Golubnitschaja O, Yeghiazaryan K, Costigliola V, Trog D, Braun M, Debald M, Kuhn W, Schild HH. Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon? EPMA J 2013; 4:6. [PMID: 23418957 PMCID: PMC3615949 DOI: 10.1186/1878-5085-4-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
Breast cancer is a multifactorial disease. A spectrum of internal and external factors contributes to the disease promotion such as a genetic predisposition, chronic inflammatory processes, exposure to toxic compounds, abundant stress factors, a shift-worker job, etc. The cumulative effects lead to high incidence of breast cancer in populations worldwide. Breast cancer in the USA is currently registered with the highest incidence rates amongst all cancer related patient cohorts. Currently applied diagnostic approaches are frequently unable to recognise early stages in tumour development that impairs individual outcomes. Early diagnosis has been demonstrated to be highly beneficial for significantly enhanced therapy efficacy and possibly full recovery. Actual paper shows that the elaboration of an integrative diagnostic approach combining several levels of examinations creates a robust platform for the reliable risk assessment, targeted preventive measures and more effective treatments tailored to the person in the overall task of breast cancer management. The levels of examinations are proposed, and innovative technological approaches are described in the paper. The absolute necessity to create individual patient profiles and extended medical records is justified for the utilising by routine medical services. Expert recommendations are provided to promote further developments in the field.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Department of Radiology, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str, 25, Bonn, 53105, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Konsavage WM, Umstead TM, Wu Y, Phelps DS, Shenberger JS. Hyperoxia-induced alterations in the pulmonary proteome of juvenile rats. Exp Lung Res 2013; 39:107-17. [DOI: 10.3109/01902148.2013.763871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012; 69:1773-85. [PMID: 22159585 PMCID: PMC11114673 DOI: 10.1007/s00018-011-0894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.
Collapse
Affiliation(s)
- Magdalena Domon
- Laboratory of Lipid Biochemistry, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|