1
|
Jehanno C, Le Page Y, Flouriot G, Le Goff P, Michel D. Synergistic activation of genes promoting invasiveness by dual deprivation in oxygen and nutrients. Int J Exp Pathol 2023; 104:64-75. [PMID: 36694990 PMCID: PMC10009306 DOI: 10.1111/iep.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
By depriving cancer cells of blood supplies of oxygen and nutrients, anti-angiogenic therapy is aimed at simultaneously asphyxiating and starving the cells. But in spite of its apparent logic, this strategy is generally counterproductive over the long term as the treatment seems to elicit malignancy. Since a defect of blood supply is expected to deprive tumours simultaneously of oxygen and nutrients naturally, we examine here these two deprivations, alone or in combination, on the phenotype and signalling pathways of moderately aggressive MCF7 cancer cells. Each deprivation induces some aspects of the aggressive and migratory phenotypes through activating several pathways, including HIF1-alpha as expected, but also SRF/MRTFA and TCF4/beta-catenin. Strikingly, the dual deprivation has strong cooperative effects on the upregulation of genes increasing the metastatic potential, such as four and a half LIM domains 2 (FHL2) and HIF1A-AS2 lncRNA, which have response elements for both pathways. Using anti-angiogenic agents as monotherapy is therefore questionable as it may give falsely promising short-term tumour regression, but could ultimately exacerbate aggressive phenotypes.
Collapse
Affiliation(s)
- Charly Jehanno
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yann Le Page
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Gilles Flouriot
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Pascale Le Goff
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Denis Michel
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| |
Collapse
|
2
|
Su M, Shan S, Gao Y, Dai M, Wang H, He C, Zhao M, Liang Z, Wan S, Yang J, Cai H. 2-Deoxy-D-glucose simultaneously targets glycolysis and Wnt/β-catenin signaling to inhibit cervical cancer progression. IUBMB Life 2023. [PMID: 36809563 DOI: 10.1002/iub.2706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Cervical cancer is one of the most common female malignant tumors, with typical cancer metabolism characteristics of increased glycolysis flux and lactate accumulation. 2-Deoxy-D-glucose (2-DG) is a glycolysis inhibitor that acts on hexokinase, the first rate-limiting enzyme in the glycolysis pathway. In this research, we demonstrated that 2-DG effectively reduced glycolysis and impaired mitochondrial function in cervical cancer cell lines HeLa and SiHa. Cell function experiments revealed that 2-DG significantly inhibited cell growth, migration, and invasion, and induced G0/G1 phase arrest at non-cytotoxic concentrations. In addition, we found that 2-DG down-regulated Wingless-type (Wnt)/β-catenin signaling. Mechanistically, 2-DG accelerated the degradation of β-catenin protein, which resulted in the decrease of β-catenin expression in both nucleus and cytoplasm. The Wnt agonist lithium chloride and β-catenin overexpression vector could partially reverse the inhibition of malignant phenotype by 2-DG. These data suggested that 2-DG exerted its anti-cancer effects on cervical cancer by co-targeting glycolysis and Wnt/β-catenin signaling. As expected, the combination of 2-DG and Wnt inhibitor synergistically inhibited cell growth. It is noteworthy that, down-regulation of Wnt/β-catenin signaling also inhibited glycolysis, indicating a similar positive feedback regulation between glycolysis and Wnt/β-catenin signaling. In conclusion, we investigated the molecular mechanism by which 2-DG inhibits the progression of cervical cancer in vitro, elucidated the interregulation between glycolysis and Wnt/β-catenin signaling, and preliminarily explored the effect of combined targeting of glycolysis and Wnt/β-catenin signaling on cell proliferation, which provides more possibilities for the formulation of subsequent clinical treatment strategies.
Collapse
Affiliation(s)
- Min Su
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Shidong Shan
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Can He
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Mengna Zhao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Junyuan Yang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Fu S, Meng H, Inamdar S, Das B, Gupta H, Wang W, Thompson CL, Knight MM. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage 2021; 29:89-99. [PMID: 33395574 PMCID: PMC7799379 DOI: 10.1016/j.joca.2020.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage health is maintained in response to a range of mechanical stimuli including compressive, shear and tensile strains and associated alterations in osmolality. The osmotic-sensitive ion channel Transient Receptor Potential Vanilloid 4 (TRPV4) is required for mechanotransduction. Mechanical stimuli inhibit interleukin-1β (IL-1β) mediated inflammatory signalling, however the mechanism is unclear. This study aims to clarify the role of TRPV4 in this response. DESIGN TRPV4 activity was modulated glycogen synthase kinase (GSK205 antagonist or GSK1016790 A (GSK101) agonist) in articular chondrocytes and cartilage explants in the presence or absence of IL-1β, mechanical (10% cyclic tensile strain (CTS), 0.33 Hz, 24hrs) or osmotic loading (200mOsm, 24hrs). Nitric oxide (NO), prostaglandin E2 (PGE2) and sulphated glycosaminoglycan (sGAG) release and cartilage biomechanics were analysed. Alterations in post-translational tubulin modifications and primary cilia length regulation were examined. RESULTS In isolated chondrocytes, mechanical loading inhibited IL-1β mediated NO and PGE2 release. This response was inhibited by GSK205. Similarly, osmotic loading was anti-inflammatory in cells and explants, this response was abrogated by TRPV4 inhibition. In explants, GSK101 inhibited IL-1β mediated NO release and prevented cartilage degradation and loss of mechanical properties. Upon activation, TRPV4 cilia localisation was increased resulting in histone deacetylase 6 (HDAC6)-dependent modulation of soluble tubulin and altered cilia length regulation. CONCLUSION Mechanical, osmotic or pharmaceutical activation of TRPV4 regulates HDAC6-dependent modulation of ciliary tubulin and is anti-inflammatory. This study reveals for the first time, the potential of TRPV4 manipulation as a novel therapeutic mechanism to supress pro-inflammatory signalling and cartilage degradation.
Collapse
Affiliation(s)
- S Fu
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - H Meng
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - S Inamdar
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - B Das
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK
| | - H Gupta
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - W Wang
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - C L Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| | - M M Knight
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK.
| |
Collapse
|
4
|
Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med 2020; 5:14. [PMID: 32821434 PMCID: PMC7395755 DOI: 10.1038/s41536-020-00099-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cell dedifferentiation is the process by which cells grow reversely from a partially or terminally differentiated stage to a less differentiated stage within their own lineage. This extraordinary phenomenon, observed in many physiological processes, inspires the possibility of developing new therapeutic approaches to regenerate damaged tissue and organs. Meanwhile, studies also indicate that dedifferentiation can cause pathological changes. In this review, we compile the literature describing recent advances in research on dedifferentiation, with an emphasis on tissue-specific findings, cellular mechanisms, and potential therapeutic applications from an engineering perspective. A critical understanding of such knowledge may provide fresh insights for designing new therapeutic strategies for regenerative medicine based on the principle of cell dedifferentiation.
Collapse
Affiliation(s)
- Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
5
|
Kim SM, Han Y, Yu SM, Kim SJ. Gallotannin attenuates 2‑deoxy‑D‑glucose‑induced dedifferentiation and endoplasmic reticulum stress through inhibition of inositol‑requiring enzyme 1 downstream p38 kinase pathway in chondrocytes. Mol Med Rep 2019; 20:5249-5256. [PMID: 31661132 DOI: 10.3892/mmr.2019.10773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/18/2019] [Indexed: 11/06/2022] Open
Abstract
Gallotannin (GT) is a class of polyphenols with antioxidant, anticancer, and antiviral activities. 2‑Deoxy‑D‑glucose (2DG), a glucose‑derived molecule, can inhibit glucose metabolism and induce endoplasmic reticulum (ER) stress. GT in primary‑cultured chondrocytes enhances expression of type II collagen, an indicator of differentiation, and cyclooxygenase‑2 (COX‑2), which mediates inflammatory reactions. In contrast, 2DG reduces type II collagen and COX‑2 expression while driving ER‑stress‑induced unglycosylation. In the present study, it was investigated whether GT could attenuate 2DG‑induced dedifferentiation and ER‑stress. Following treatment with GT and 2DG, chondrocytes were assessed using western blotting, RT‑PCR, immunofluorescence, and alcian blue staining. GT restored type II collagen expression that was reduced by 2DG, inhibited ER‑stress‑induced COX‑2 unglycosylation, and induced COX‑2 expression. The expression of a glucose‑regulated protein, GRP78, which is an indicator of reduced ER‑stress, was decreased. To link the GT signaling pathway with pathways that inhibit 2DG‑induced dedifferentiation and ER‑stress, inhibitors were treated in chondrocytes. The results revealed that, among the different signaling pathways triggered by ER‑stress, the p38 kinase pathway was involved in the inositol‑requiring enzyme 1 (IRE1) downstream signaling pathway. Following inhibition of the IRE1 pathway, type II collagen expression was increased and COX‑2 expression was decreased. In addition, after examining the splicing of X‑box binding protein 1 (XBP‑1) which is dependent on IRE1 activation induced by ER‑stress, it was revealed that GT inhibited the increase of XBP‑1s after splicing due to 2DG‑induced ER stress. GT in chondrocytes inhibited 2DG‑induced dedifferentiation and ER‑stress‑induced COX‑2 unglycosylation while regulating differentiation and inflammation via the ER‑stress‑induced p38 kinase pathway downstream from the IRE1 pathway.
Collapse
Affiliation(s)
- Su Min Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam Do 314‑701, Republic of Korea
| | - Yohan Han
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam Do 314‑701, Republic of Korea
| | - Seon-Mi Yu
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam Do 314‑701, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam Do 314‑701, Republic of Korea
| |
Collapse
|
6
|
Xu W, Gao P, Zhang Y, Piao L, Dong D. microRNA-138 induces cell survival and reduces WNT/β-catenin signaling of osteoarthritis chondrocytes through NEK2. IUBMB Life 2019; 71:1355-1366. [PMID: 31034758 DOI: 10.1002/iub.2050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by joint pain, stiffness, and function degeneration with high incidence. Recent studies have been inspired based on the association between microRNAs (miRs) and therapeutic research of OA. Hence, the present study evaluates the effects of miR-138 on chondrocyte proliferation, differentiation, and apoptosis through the WNT/β-catenin signaling pathway in mice with OA by binding to NIMA-related kinase 2 (NEK2). Appropriate dataset was selected from the Gene Expression Omnibus database, and differentially expressed genes and potential miRNAs that could regulate NEK2 were explored. A mouse model of OA was established. The expressions of miR-138, NEK2, β-catenin, GSK3β, Bcl-2, Bcl-2-associated X protein (Bax), p53, MMP-13, Col2, and Aggrecan and the phosphorylation levels of β-catenin were determined by the reverse transcription quantitative polymerase chain reaction and Western blot analysis. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry were employed to detect cell proliferation and apoptosis, respectively. The potential functional role of NEK2 was revealed to be related to the WNT/β-catenin signaling pathway, and miR-138 was the putative regulator of NEK2. miR-138 expression was downregulated while expressions of NEK2 and β-catenin as well as the phosphorylation levels of β-catenin were upregulated in mice with OA. The chondrocytes treated with miR-138 mimic and siRNA-NEK2 exhibited reduced expressions of NEK2, β-catenin, MMP-13, Bax, and p53 and elevated expressions of Col2, Aggrecan, and Bcl-2 as well as phosphorylation levels of β-catenin along with enhanced chondrocytes' proliferation and suppressed cell apoptosis. Overexpression of miR-138 induces cell survival and reduces WNT/β-catenin signaling of OA chondrocytes through NEK2. © 2019 IUBMB Life, 71(9):1355-1366, 2019.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Peihong Gao
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Zhang
- Jilin Province Population Life Science and Technology Research Institute, Changchun, People's Republic of China
| | - Li Piao
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Izumi S, Otsuru S, Adachi N, Akabudike N, Enomoto-Iwamoto M. Control of glucose metabolism is important in tenogenic differentiation of progenitors derived from human injured tendons. PLoS One 2019; 14:e0213912. [PMID: 30883580 PMCID: PMC6422258 DOI: 10.1371/journal.pone.0213912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Glucose metabolism is altered in injured and healing tendons. However, the mechanism by which the glucose metabolism is involved in the pathogenesis of tendon healing process remains unclear. Injured tendons do not completely heal, and often induce fibrous scar and chondroid lesion. Because previous studies have shown that tendon progenitors play roles in tendon repair, we asked whether connective tissue progenitors appearing in injured tendons alter glucose metabolism during tendon healing process. We isolated connective tissue progenitors from the human injured tendons, obtained at the time of primary surgical repair of rupture or laceration. We first characterized the change in glucose metabolism by metabolomics analysis using [1,2-13C]-glucose using the cells isolated from the lacerated flexor tendon. The flux of glucose to the glycolysis pathway was increased in the connective tissue progenitors when they proceeded toward tenogenic and chondrogenic differentiation. The influx of glucose to the tricarboxylic acid (TCA) cycle and biosynthesis of amino acids from the intermediates of the TCA cycle were strongly stimulated toward chondrogenic differentiation. When we treated the cultures with 2-deoxy-D-glucose (2DG), an inhibitor of glycolysis, 2DG inhibited chondrogenesis as characterized by accumulation of mucopolysaccharides and expression of AGGRECAN. Interestingly, 2DG strongly stimulated expression of tenogenic transcription factor genes, SCLERAXIS and MOHAWK under both chondrogenic and tenogenic differentiation conditions. The findings suggest that control of glucose metabolism is beneficial for tenogenic differentiation of connective tissue progenitors.
Collapse
Affiliation(s)
- Soutarou Izumi
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- Department of Orthopaedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Ngozi Akabudike
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- * E-mail: (MEI); (NA)
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- * E-mail: (MEI); (NA)
| |
Collapse
|
8
|
Han Y, Kim SJ. Simvastatin-dependent actin cytoskeleton rearrangement regulates differentiation via the extracellular signal-regulated kinase-1/2 and p38 kinase pathways in rabbit articular chondrocytes. Eur J Pharmacol 2018; 834:197-205. [PMID: 30009811 DOI: 10.1016/j.ejphar.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
Alterations in cell morphology involve changes in the actin cytoskeleton and play crucial roles in determining chondrocyte phenotypes. Although the effects of simvastatin (SV) have been demonstrated in various cell types, the mechanisms and effects of SV on chondrocyte differentiation and actin cytoskeletal rearrangement are still unclear. Here, we investigated the roles of actin filament rearrangement on SV-induced differentiation of rabbit articular chondrocytes. Treatment with SV caused actin remodeling in comparison with that in untreated chondrocytes, as determined by immunofluorescence staining. Moreover, treatment with cytochalasin D (CD) and jasplakinolide (JAS), which modulate actin filament formation, resulted in reorganization of the actin cytoskeleton compared with that induced by SV in chondrocytes. In addition, CD synergistically enhanced the SV-induced increase in type II collagen expression, whereas JAS dramatically inhibited SV-induced differentiation. We also found that differentiation via SV-dependent actin cytoskeleton changes was regulated by the extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase pathways. These results demonstrated that actin cytoskeletal rearrangement by SV regulated type II collagen expression and suggested that ERK-1/2 and p38 kinase pathways may play important roles in SV-induced type II collagen expression by altering actin cytoskeletal reorganization in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Yohan Han
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea.
| |
Collapse
|
9
|
Yu SM, Choi YJ, Kim SJ. PEP-1-glutaredoxin-1 induces dedifferentiation of rabbit articular chondrocytes by the endoplasmic reticulum stress-dependent ERK-1/2 pathway and the endoplasmic reticulum stress-independent p38 kinase and PI-3 kinase pathways. Int J Biol Macromol 2018; 111:1059-1066. [PMID: 29366902 DOI: 10.1016/j.ijbiomac.2018.01.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
Abstract
Glutaredoxin-1 (GRX-1), belonging to the oxidoreductase family, is a component of the endogenous antioxidant defense system. In this study, we evaluated the effects of PEP-1-GRX-1 in rabbit articular chondrocytes. We found that PEP-1-GRX-1 causes a loss of the differentiated chondrocyte phenotype. PEP-1-GRX-1-treated cells exhibited decreases in type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. PEP-1-GRX-1 causes endoplasmic reticulum (ER)-stress, as evidenced by increases in ER stress marker proteins, i.e., glucose-regulated protein (GRP) 78, GRP 94, and phospho-eukaryotic initiation factor 2 (eIF2) α. These effects were inhibited by ER stress inhibitors. PEP-1-GRX-1 increased the phosphorylation of Akt, extracellular signal-regulated kinase (ERK)-1/2, and p38. Inhibition of ERK-1/2 by PD98059 prevented PEP-1-GRX-1-induced dedifferentiation and inhibited ER stress. The blockage of PI-3K/Akt or p38 kinase with SB203580 and LY294002 accelerated PEP-1-GRX-1-induced dedifferentiation, but did not have any effect on PEP-GRX-1-induced ER stress. Our results indicate that the ERK-1/2 pathway mediates chondrocyte dedifferentiation by PEP-GRX-1-induced ER stress. The PI-3K and p38 kinase pathways regulate PEP-1-GRX-1-induced chondrocyte dedifferentiation by an ER stress-independent pathway.
Collapse
Affiliation(s)
- Seon-Mi Yu
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea.
| |
Collapse
|
10
|
Ko KW, Choi B, Park S, Arai Y, Choi WC, Lee JM, Bae H, Han IB, Lee SH. Down-Regulation of Transglutaminase 2 Stimulates Redifferentiation of Dedifferentiated Chondrocytes through Enhancing Glucose Metabolism. Int J Mol Sci 2017; 18:E2359. [PMID: 29112123 PMCID: PMC5713328 DOI: 10.3390/ijms18112359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022] Open
Abstract
Expansion of chondrocytes for repair of articular cartilage can lead to dedifferentiation, making it difficult to obtain a sufficient quantity of chondrocytes. Although previous studies have suggested that culture in a three-dimensional environment induces redifferentiation of dedifferentiated chondrocytes, its underlying mechanisms are still poorly understood in terms of metabolism compared with a two-dimensional environment. In this study, we demonstrate that attenuation of transglutaminase 2 (TG2), a multifunctional enzyme, stimulates redifferentiation of dedifferentiated chondrocytes. Fibroblast-like morphological changes increased as TG2 expression increased in passage-dependent manner. When dedifferentiated chondrocytes were cultured in a pellet culture system, TG2 expression was reduced and glycolytic enzyme expression up-regulated. Previous studies demonstrated that TG2 influences energy metabolism, and impaired glycolytic metabolism causes chondrocyte dedifferentiation. Interestingly, TG2 knockdown improved chondrogenic gene expression, glycolytic enzyme expression, and lactate production in a monolayer culture system. Taken together, down-regulation of TG2 is involved in redifferentiaton of dedifferentiated chondrocytes through enhancing glucose metabolism.
Collapse
Affiliation(s)
- Kyoung-Won Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Korea.
| | - Bogyu Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Korea.
| | - Sunghyun Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Korea.
| | - Yoshie Arai
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Korea.
| | - Won Chul Choi
- Department of Orthopedic Surgery, Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea.
| | - Joong-Myung Lee
- Department of Orthopedic Surgery, Bundang Medical Center, CHA University, Seongnam-si 13496, Gyeonggi-do, Korea.
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea.
| | - In-Bo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Korea.
| |
Collapse
|
11
|
Parreno J, Nabavi Niaki M, Andrejevic K, Jiang A, Wu PH, Kandel RA. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture. J Anat 2016; 230:234-248. [PMID: 27807861 DOI: 10.1111/joa.12554] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P < 0.05) increased gene expression of proliferation-associated molecules (cyclin D1 and ki67), as well as significantly (P < 0.05) decreased cartilage matrix (type II collagen and aggrecan) and increased fibroblast-like matrix, type I collagen (COL1), gene expression by passage 2 (P2). Although tubulin polymerization status was not significantly (P > 0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore, culture of bovine P2 chondrocytes in 3D culture on porous bone substitute resulted in actin depolymerization, which correlated with decreased expression of COL1 and proliferation molecules. In 3D cultures, aggrecan gene expression was increased by cytochalasin D treatment and COL1 was further decreased. These results reveal that actin polymerization status regulates chondrocyte dedifferentiation. Reorganization of the cytoskeleton by actin depolymerization appears to be an active regulatory mechanism for redifferentiation of passaged chondrocytes.
Collapse
Affiliation(s)
- Justin Parreno
- CIHR-BioEngineering of Skeletal Tissues Team, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mortah Nabavi Niaki
- CIHR-BioEngineering of Skeletal Tissues Team, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Katarina Andrejevic
- CIHR-BioEngineering of Skeletal Tissues Team, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Amy Jiang
- CIHR-BioEngineering of Skeletal Tissues Team, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Po-Han Wu
- CIHR-BioEngineering of Skeletal Tissues Team, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rita A Kandel
- CIHR-BioEngineering of Skeletal Tissues Team, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Temporal Analyses of the Response of Intervertebral Disc Cells and Mesenchymal Stem Cells to Nutrient Deprivation. Stem Cells Int 2016; 2016:5415901. [PMID: 26977156 PMCID: PMC4764757 DOI: 10.1155/2016/5415901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/05/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023] Open
Abstract
Much emphasis has been placed recently on the repair of degenerate discs using implanted cells, such as disc cells or bone marrow derived mesenchymal stem cells (MSCs). This study examines the temporal response of bovine and human nucleus pulposus (NP) cells and MSCs cultured in monolayer following exposure to altered levels of glucose (0, 3.15, and 4.5 g/L) and foetal bovine serum (0, 10, and 20%) using an automated time-lapse imaging system. NP cells were also exposed to the cell death inducers, hydrogen peroxide and staurosporine, in comparison to serum starvation. We have demonstrated that human NP cells show an initial “shock” response to reduced nutrition (glucose). However, as time progresses, NP cells supplemented with serum recover with minimal evidence of cell death. Human NP cells show no evidence of proliferation in response to nutrient supplementation, whereas MSCs showed greater response to increased nutrition. When specifically inducing NP cell death with hydrogen peroxide and staurosporine, as expected, the cell number declined. These results support the concept that implanted NP cells or MSCs may be capable of survival in the nutrient-poor environment of the degenerate human disc, which has important clinical implications for the development of IVD cell therapies.
Collapse
|
13
|
Charlier E, Malaise O, Zeddou M, Neuville S, Cobraiville G, Deroyer C, Sanchez C, Gillet P, Kurth W, de Seny D, Relic B, Malaise MG. Restriction of spontaneous and prednisolone-induced leptin production to dedifferentiated state in human hip OA chondrocytes: role of Smad1 and β-catenin activation. Osteoarthritis Cartilage 2016; 24:315-24. [PMID: 26318657 DOI: 10.1016/j.joca.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aetiology of OA is not fully understood although several adipokines such as leptin are known mediators of disease progression. Since leptin levels were increased in synovial fluid compared to serum in OA patients, it was suggested that joint cells themselves could produce leptin. However, exact mechanisms underlying leptin production by chondrocytes are poorly understood. Nevertheless, prednisolone, although displaying powerful anti-inflammatory properties has been recently reported to be potent stimulator of leptin and its receptor in OA synovial fibroblasts. Therefore, we investigated, in vitro, spontaneous and prednisolone-induced leptin production in OA chondrocytes, focusing on transforming growth factor-β (TGFβ) and Wnt/β-catenin pathways. DESIGN We used an in vitro dedifferentiation model, comparing human freshly isolated hip OA chondrocytes cultivated in monolayer during 1 day (type II, COL2A1 +; type X, COL10A1 + and type I collagen, COL1A1 -) or 14 days (COL2A1 -; COL10A1 - and COL1A1+). RESULTS Leptin expression was not detected in day1 OA chondrocytes whereas day14 OA chondrocytes produced leptin, significantly increased with prednisolone. Activin receptor-like kinase 1 (ALK1)/ALK5 ratio was shifted during dedifferentiation, from high ALK5 and phospho (p)-Smad2 expression at day1 to high ALK1, endoglin and p-Smad1/5 expression at day14. Moreover, inactive glycogen synthase kinase 3 (GSK3) and active β-catenin were only found in dedifferentiated OA chondrocytes. Smad1 and β-catenin but not endoglin stable lentiviral silencing led to a significant decrease in leptin production by dedifferentiated OA chondrocytes. CONCLUSIONS Only dedifferentiated OA chondrocytes produced leptin. Prednisolone markedly enhanced leptin production, which involved Smad1 and β-catenin activation.
Collapse
Affiliation(s)
- E Charlier
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium.
| | - O Malaise
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - M Zeddou
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - S Neuville
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - G Cobraiville
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - C Deroyer
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - C Sanchez
- Bone and Cartilage Research Unit, Arthropole Liège, University of Liège, Belgium
| | - P Gillet
- Orthopedic Surgery Unit, CHU of Liège, Belgium
| | - W Kurth
- Orthopedic Surgery Unit, CHU of Liège, Belgium
| | - D de Seny
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - B Relic
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| | - M G Malaise
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, Arthropole Liège, University of Liège, Belgium
| |
Collapse
|
14
|
Spitters TWGM, Mota CMD, Uzoechi SC, Slowinska B, Martens DE, Moroni L, Karperien M. Glucose gradients influence zonal matrix deposition in 3D cartilage constructs. Tissue Eng Part A 2015; 20:3270-8. [PMID: 24903611 DOI: 10.1089/ten.tea.2014.0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reproducing the native collagen structure and glycosaminoglycan (GAG) distribution in tissue-engineered cartilage constructs is still a challenge. Articular cartilage has a specific nutrient supply and mechanical environment due to its location and function in the body. Efforts to simulate this native environment have been reported through the use of bioreactor systems. However, few of these devices take into account the existence of gradients over cartilage as a consequence of the nutrient supply by diffusion. We hypothesized that culturing chondrocytes in an environment, in which gradients of nutrients can be mimicked, would induce zonal differentiation. Indeed, we show that glucose gradients facilitating a concentration distribution as low as physiological glucose levels enhanced a zonal chondrogenic capacity similar to the one found in native cartilage. Furthermore, we found that the glucose consumption rates of cultured chondrocytes were higher under physiological glucose concentrations and that GAG production rates were highest in 5 mM glucose. From these findings, we concluded that this condition is better suited for matrix deposition compared to 20 mM glucose standard used in a chondrocyte culture system. Reconsidering the culture conditions in cartilage tissue engineering strategies can lead to cartilaginous constructs that have better mechanical and structural properties, thus holding the potential of further enhancing integration with the host tissue.
Collapse
Affiliation(s)
- Tim W G M Spitters
- 1 Department of Developmental BioEngineering, MIRA Institute, University of Twente , Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Peng S, Liu HX, Ko CY, Yang SR, Hung WL, Chu IM. A hydrolytically-tunable photocrosslinked PLA-PEG-PLA/PCL-PEG-PCL dual-component hydrogel that enhances matrix deposition of encapsulated chondrocytes. J Tissue Eng Regen Med 2014; 11:669-678. [DOI: 10.1002/term.1963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/18/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Sydney Peng
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Huang-Xiang Liu
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Chao-Yin Ko
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Shu-Rui Yang
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Wei-Lun Hung
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - I-Ming Chu
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| |
Collapse
|
16
|
Johno H, Kitamura M. Pathological in situ reprogramming of somatic cells by the unfolded protein response. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:644-54. [PMID: 23831328 DOI: 10.1016/j.ajpath.2013.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022]
Abstract
In response to tissue injuries, terminally differentiated cells are reprogrammed to undergo dedifferentiation to gain mitogenic and metabolic properties. The dedifferentiated cells acquire an immature phenotype, proliferate actively, produce abundant extracellular matrix, and recruit circulating leukocytes via secretion of chemokines, contributing to tissue repair and/or fibrosis. However, this remodeling process is self-limiting, and in the later phase, the activated, dedifferentiated cells are reprogrammed to redifferentiate into a mature, quiescent phenotype. Currently, molecular mechanisms underlying this bidirectional pathological reprogramming remain elusive. It is known that the unfolded protein response (UPR) is induced at local tissues under pathological situations and affects cellular fate-survival or death. It is also known that the UPR is involved in cell differentiation and organogenesis during embryonic development. In this review, we describe a hypothesis for regulatory roles of the UPR in the pathological reprogramming of somatic cells (ie, cellular dedifferentiation and redifferentiation at the sites of injury).
Collapse
Affiliation(s)
- Hisashi Johno
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | |
Collapse
|