1
|
Putri IL, Fabian P, Wungu CDK. A meta-analysis of alveolar bone grafting using bone substitutes in cleft lip and palate patients. Tzu Chi Med J 2024; 36:53-58. [PMID: 38406575 PMCID: PMC10887340 DOI: 10.4103/tcmj.tcmj_125_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 02/27/2024] Open
Abstract
In individuals with cleft lip and palate (CLP), an alveolar bone graft (ABG) is carried out for alveolar cleft closure. Several sources for ABG include autologous bone, xenologous bone, and alloplastic substitutes. Autologous bone has been the preferred source for ABG. Alloplastic substitutes might serve as an alternative. This study aimed to compare the outcomes between autologous and alloplastic as sources for ABG. This study made use of eight web databases. Randomized control trials (RCTs) and non-RCTs were included. CLP patients with alveolar cleft with imaging studies, computed tomography (CT scan) and/or cone beam CT scan, and bone graft volume within 6-12 months postintervention were selected. Bone graft volume within 6-12 months postintervention was assessed. Three studies met the inclusion criteria. After 6-12 months of follow-up, there were no statistically significant differences in bone graft volume between autologous and alloplastic bone grafts (fixed-effect model estimate value = 0.21; confidence interval - 0.301-0.730; P = 0.414). The limitations include small research sample sizes, a high likelihood of bias among included studies, and different alloplastic materials from each included study. Autologous and alloplastic bone grafts showed similar effectiveness in alveolar bone grafting. Further clinical trial studies with bigger sample sizes and similar interventions are needed as evidence for future reviews.
Collapse
Affiliation(s)
- Indri Lakhsmi Putri
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Pascalis Fabian
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga Universitas Hospital, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
2
|
Mohaghegh S, Sadat Haeri Boroojeni H, Nokhbatolfoghahaei H, Khojasteh A. Application of biodegradable Patient-specific scaffolds for maxillofacial bone regeneration: a scoping review of clinical studies. Br J Oral Maxillofac Surg 2023; 61:587-597. [PMID: 37845099 DOI: 10.1016/j.bjoms.2023.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 10/18/2023]
Abstract
This study aimed to systematically review clinical studies in which biodegradable patient-specific scaffolds were used for bone regeneration. Studies in which biodegradable scaffolds were fabricated through computer-assisted design and computer-assisted manufacturing (CAD-CAM) procedures were included. Those that applied non-biodegradable materials or used biodegradable materials in a condensable powder or block form were excluded. Among a total of 26 included studies, 11 used customised allogeneic bone blocks, five used polycaprolactone (PCL)-containing scaffolds, four used hydroxyapatite (HA) scaffolds, and four biphasic calcium phosphate (BCP). The majority of the studies applied scaffolds for minor intraoral defects. All the large defects were reconstructed with polymer-containing scaffolds. Results of the included studies showed partial to complete filling of the defect following the application of biodegradable scaffolds. However, limited graft exposure was reported when using PCL, BCP, and HA scaffolds. Tissue engineering can be considered a potential method for the treatment of maxillofacial bone defects. However, more evidence is required, especially for the application of biodegradable scaffolds in large defects.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Helia Sadat Haeri Boroojeni
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran.
| |
Collapse
|
3
|
Sanchla AD, Shrivastav S, Bhola ND, Kamble R. Interdisciplinary Treatment of a Case With Unilateral Cleft Lip and Palate in the Mixed Dentition. Cureus 2023; 15:e37148. [PMID: 37168178 PMCID: PMC10166415 DOI: 10.7759/cureus.37148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
A 10-year-old girl had reported to Sharad Pawar Dental College. Her parents had chief complaints of lip and palate deformity. On examination, it was found that the patient had unilateral cleft lip and palate on the right side. The aim was to expand the maxilla with alveolar bone grafting in the cleft region to facilitate the eruption of permanent canine and further reduce the deformity to prepare the patient for face mask therapy, reduce morbidity in the permanent dentition, and avoid Le Fort one surgery in the future. She had been previously operated on for cleft lip repair and palatal fistula closure eight years back. The present condition in the mixed dentition needed arch expansion, bone in the cleft region for the eruption of permanent canine, and further arch alignment for facemask therapy. This would reduce the severity of skeletal deformity and later on avoid the surgical advancement of the maxilla.
Collapse
|
4
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
5
|
Singkhorn T, Pripatnanont P, Nuntanaranont T, Supakanjanakanti D, Ritthagol W. Influence of a resorbable collagen membrane for alveolar bone graft on clinical outcomes and ridge volume stability in cleft alveolus. Int J Oral Maxillofac Surg 2022:S0901-5027(22)00465-9. [PMID: 36567198 DOI: 10.1016/j.ijom.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
This study compared the clinical outcomes, graft quality, and graft quantity after alveolar bone grafting with and without a resorbable collagen membrane. Twenty unilateral cleft patients undergoing defect repair with cancellous iliac bone were assigned to either the collagen membrane group (Mb group) or standard group without a membrane (St group). Postoperative pain and swelling, bone density, and bone volume and quality were assessed. The Mb group showed significantly lower postoperative pain than the St group (P < 0.001) and significantly less swelling (P < 0.01) on day 3 postoperative. The reduction in bone density was significantly greater in the St group than in the Mb group at 1 and 3 months postoperative (P ≤ 0.001), but not at 6 months. The reduction in bone volume in the St group was significantly greater than that in the Mb group at 3 months (29.11 ± 6.26% vs 17.67 ± 11.89%, P = 0.016) and 6 months postoperative (40.95 ± 6.81% vs 25.67 ± 11.51%, P = 0.002). Nine cases in the Mb group versus six in the St group showed good bone quality. In conclusion, the collagen membrane facilitated predictable clinical outcomes in bone maturation, bone volume preservation, and bone bridging in the alveolar bone graft.
Collapse
Affiliation(s)
- T Singkhorn
- Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - P Pripatnanont
- Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - T Nuntanaranont
- Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - D Supakanjanakanti
- Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - W Ritthagol
- Preventive Dentistry Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Amiri MA, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: review and recommendations. J Korean Assoc Oral Maxillofac Surg 2022; 48:71-78. [PMID: 35491137 PMCID: PMC9065639 DOI: 10.5125/jkaoms.2022.48.2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
This study was conducted to review the efficacy of different sources of stem cells in bone regeneration of cleft palate patients. The majority of previous studies focused on the transplantation of bone marrow mesenchymal stem cells. However, other sources of stem cells have also gained considerable attention, and dental stem cells have shown especially favorable outcomes. Additionally, approaches that apply the co-culture and co-transplantation of stem cells have shown promising results. The use of different types of stem cells, based on their accessibility and efficacy in bone regeneration, is a promising method in cleft palate bone regeneration. In this regard, dental stem cells may be an ideal choice due to their efficacy and accessibility. In conclusion, stem cells, despite the lengthy procedures required for culture and preparation, are a suitable alternative to conventional bone grafting techniques.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Danesteh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Alfayez E, Alghamdi F. Clinical Application of Stem Cell Therapy in Reconstructing Maxillary Cleft Alveolar Bone Defects: A Systematic Review of Randomized Clinical Trials. Cureus 2022; 14:e23111. [PMID: 35425680 PMCID: PMC9002340 DOI: 10.7759/cureus.23111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 11/25/2022] Open
Abstract
An alveolar cleft is the most common congenital bone defect. This systematic review aimed to investigate the use of stem cells for alveolar cleft repair and summarize the outcomes of clinical research studies. The electronic databases PubMed, Scopus, Web of Sciences, and Google Scholar were utilized to search the literature for relevant studies after administering specific inclusion and exclusion criteria. The search included articles that were published from 2011 to 2021 and specific keywords were used in the databases. The search was completed by two independent reviewers following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.Only four studies satisfied both the inclusion and exclusion criteria and were included in this systematic review. These studies investigated different aspects of bone reconstruction in the maxillary alveolar bone by stem cells, including cell types, clinical applications, biomaterial scaffolds, and follow-up period. The accumulated evidence in this systematic review is limited and insufficient to support the role of stem cell use in bone regeneration of maxillary alveolar bone defects. The outcome of using stem cells was studied only in 57 subjects from the four included studies. Although the noninvasive methods of isolating stem cells make them attractive resources for bone regeneration, more research is required in order to standardize and investigate stem cell therapy. This should be done beforehand in adults in less invasive procedures such as bone defect repair in dentistry prior to considering this type of therapy in this vulnerable patient population.
Collapse
Affiliation(s)
- Eman Alfayez
- Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Faisal Alghamdi
- Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
8
|
Motamedian SR, Mohaghegh S, Lakmazaheri E, Ahmadi N, Kouhestani F. Efficacy of regenerative medicine for alveolar cleft reconstruction: A systematic review and meta-analysis. Curr Stem Cell Res Ther 2022; 17:446-465. [DOI: 10.2174/1574888x17666220204145347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Objective:
Objective: To analyze the efficacy and complications of regenerative medicine compared to autogenous bone graft for alveolar cleft reconstruction.
Method:
Method: Electronic search was done in PubMed, Scopus, Embase and Cochrane database for studies published until May 2021. No limitations were considered for the type of the included studies. The risk of bias (ROB) of the studies was assessed using the Cochrane Collaborations and NIH quality assessment tool. Meta-analyses were performed to assess the difference in the amount of bone formation and rate of complications. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used for analyzing the level of the evidence.
Results:
Results: Among a total of 42 included studies, 21 studies used growth factors, 16 studies delivered cells, and five studies used biomaterials for bone regeneration of the alveolar cleft. Results showed no significant difference in the amount of bone formation between bone morphogenic protein-2 and iliac graft treated patients after six months (P=0.44) and 12 months (P=0.17) follow-up. Besides, higher swelling (OR=9.46,P<0.01) and less infection (OR=0.19,P=0.01) observed in BMP treated patients. Using stem cells can reduce the post-treatment pain (OR=0.04,P=0.01) but it has no significant impact on other complications (P>0.05). Using tissue engineering methods reduced the operation time (SD=1.06,P<0.01). GRADE assessment showed that results regarding the amount of bone formation volume after six and 12 months have low level of evidence.
Conclusion:
Conclusion: Tissue engineering methods can provide a comparable amount of bone formation as of the autogenous graft and reduce some of the complications, operation time and hospitalization duration.
Collapse
Affiliation(s)
| | - Sadra Mohaghegh
- Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Ehsan Lakmazaheri
- Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Nima Ahmadi
- University of Medical Sciences, Tehran 1983963113, Iran
| | | |
Collapse
|
9
|
Reyna-Urrutia VA, González-González AM, Rosales-Ibáñez R. Compositions and Structural Geometries of Scaffolds Used in the Regeneration of Cleft Palates: A Review of the Literature. Polymers (Basel) 2022; 14:polym14030547. [PMID: 35160534 PMCID: PMC8840587 DOI: 10.3390/polym14030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cleft palate (CP) is one of the most common birth defects, presenting a multitude of negative impacts on the health of the patient. It also leads to increased mortality at all stages of life, economic costs and psychosocial effects. The embryological development of CP has been outlined thanks to the advances made in recent years due to biomolecular successions. The etiology is broad and combines certain environmental and genetic factors. Currently, all surgical interventions work off the principle of restoring the area of the fissure and aesthetics of the patient, making use of bone substitutes. These can involve biological products, such as a demineralized bone matrix, as well as natural–synthetic polymers, and can be supplemented with nutrients or growth factors. For this reason, the following review analyzes different biomaterials in which nutrients or biomolecules have been added to improve the bioactive properties of the tissue construct to regenerate new bone, taking into account the greatest limitations of this approach, which are its use for bone substitutes for large areas exclusively and the lack of vascularity. Bone tissue engineering is a promising field, since it favors the development of porous synthetic substitutes with the ability to promote rapid and extensive vascularization within their structures for the regeneration of the CP area.
Collapse
|
10
|
The feasibility of craniofacial-derived bone marrow stem cells for the treatment of oral and maxillofacial hard tissue defects. J Dent Sci 2022; 17:1445-1447. [PMID: 35784165 PMCID: PMC9236948 DOI: 10.1016/j.jds.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Indexed: 11/23/2022] Open
|
11
|
The Use of Dual Energy X-Ray Bone Density Scan in Assessment of Alveolar Cleft Grafting Using Bone Marrow Stem Cells Concentrate/Platelet-Rich Fibrin Regenerative Technique. J Craniofac Surg 2021; 32:e780-e783. [PMID: 34727454 DOI: 10.1097/scs.0000000000007772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To determine the densitometric quality of regenerated bone at the site of bone marrow and platelet-rich membrane grafting technique at unilateral alveolar cleft region using dual energy x-ray bone density scan (DEXA). METHODS The present prospective cohort study included 16 unilateral alveolar cleft patients who were selected randomly from the outpatient maxillofacial surgery clinic and suffered from unilateral alveolar cleft. Bone marrow aspirate and platelet-rich fibrin (PRF) (bone marrow stem cells + PRF) were used as the grafting material. Six months of follow-up have been conducted for all patients' including clinical and radiographic assessments with (DEXA scan). RESULTS Sixteen unilateral patients with a mean age of 12.56 ± 1.71 years were included in the sample and the majority of patients were females with a frequency of 56.2 percent. The current research revealed no infection or wound dehiscence. After surgery, the pain and edema scores were reasonable. Our findings showed that, after 6 months of regenerative graft, the average bone mineral density of the cleft side DEXA scan value was 1.56 ± 0.32 gm/cm2, compared to 1.51 ± 0.488 gm/cm2 on the normal side of the noncleft scan. There was no statistically significant difference in DEXA bone mineral content measurements between the cleft and standard sides (P = 0.461). CONCLUSIONS The bone marrow stem cells + PRF regenerative graft technique has been successfully integrated, and the DEXA scan approach for measuring regenerated grafted bone mineral content was found to be appropriate for simple and inexpensive follow-up of alveolar cleft lip patients.
Collapse
|
12
|
Carbullido MK, Dean RA, Kamel GN, Davis GL, Hornacek M, Segal RM, Ewing E, Lance SH, Gosman AA. Long-Term Treatment Outcomes of Primary Alveolar Bone Grafts for Alveolar Clefts: A Qualitative Systematic Review. Cleft Palate Craniofac J 2021; 59:86-97. [PMID: 33631994 DOI: 10.1177/1055665621995047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alveolar bone grafting is utilized to manage alveolar clefts in patients with cleft lip and palate. However, the timing of bone grafting is variable with conflicting evidence supporting the use of primary alveolar bone grafting (PABG) in clinical practice. PRIMARY AIM To provide a qualitative systematic review analysis of long-term outcomes after PABG. MATERIALS AND METHODS A qualitative systematic review was performed following the Cochrane Handbook and reported using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Summative findings were evaluated using Confidence in the Evidence from Reviews of Qualitative research to assess the quality of evidence supporting the findings. RESULTS After removing duplication, 2182 publications were identified, and 2131 were excluded after screening through titles and abstracts. Inclusion criteria for this study included patients who underwent PABG at 24 months of age or younger and a minimum of 5 year follow-up. Thirty-two publications met the inclusion criteria and were included for qualitative analysis. Primary outcome measures included cephalometric analysis, bone graft survival, occlusal analysis, hypomineralization, tooth eruption, radiograph analysis, and arch relationships. Four assessment themes were characterized from the systematic review: (1) bone graft survival, (2) craniofacial skeletal relationships, (3) occlusion and arch forms, and (4) recommendations for utilizing PABG in practice. CONCLUSION The reported systematic review provides evidence that performing PABG leads to poor long-term outcomes related to bone graft survival and maxillary growth restriction despite some reported positive outcomes.
Collapse
Affiliation(s)
- M Kristine Carbullido
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Riley A Dean
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - George N Kamel
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA.,Fresh Start Center for Craniofacial Anomalies, 14444Rady Children's Hospital, San Diego, CA, USA
| | - Greta L Davis
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Hornacek
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Rachel M Segal
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Emily Ewing
- Fresh Start Center for Craniofacial Anomalies, 14444Rady Children's Hospital, San Diego, CA, USA
| | - Samuel H Lance
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA.,Fresh Start Center for Craniofacial Anomalies, 14444Rady Children's Hospital, San Diego, CA, USA
| | - Amanda A Gosman
- Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA, USA.,Fresh Start Center for Craniofacial Anomalies, 14444Rady Children's Hospital, San Diego, CA, USA
| |
Collapse
|
13
|
Liang Z, Huang D, Nong W, Mo J, Zhu D, Wang M, Chen M, Wei C, Li H. Advanced-platelet-rich fibrin extract promotes adipogenic and osteogenic differentiation of human adipose-derived stem cells in a dose-dependent manner in vitro. Tissue Cell 2021; 71:101506. [PMID: 33607525 DOI: 10.1016/j.tice.2021.101506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Advanced platelet-rich fibrin (A-PRF) is an autogenous biological material obtained from peripheral blood. A-PRF extract (A-PRFe) contains a high concentration of various cytokines that are increasingly appreciated for their roles in improving stem cell repairing function during tissue regeneration. However, the optimal A-PRFe concentration to stimulate stem cells is unknown. This study aimed to identify the optimal concentrations of A-PRFe to promote adipogenic and osteogenic differentiation of human adipose-derived stem cells (ASCs). We produced A-PRFe from A-PRF clots by centrifuging fresh peripheral blood samples and isolated and identified ASCs using surface CD markers and multilineage differentiation potential. Enzyme-linked immunosorbent assay (ELISA) showed the concentrations of several cytokines, including b-FGF, PDGF-BB, and others, increased gradually, peaked on day 7 and then decreased. Cell proliferation assays showed A-PRFe significantly stimulated ASC proliferation, and proliferation significantly increased at higher A-PRFe doses. The degree of adipogenic and osteogenic differentiation increased at higher A-PRFe concentrations in the culture medium, as determined by oil red O and alizarin red staining. Reverse transcription polymerase chain reaction (RT-PCR) showed that expression levels of genes related to adipogenic/osteogenic differentiation (PPARγ2, C/EBPα, FABP4, Adiponectin, and ALP, OPN, OCN, RUNX2), paracrine (HIF-1α, VEGF, IGF-2) and immunoregulation (HSP70, IL-8) function were higher in groups with a higher concentration of A-PRFe than in lower concentration groups. This study demonstrates that A-PRFe is ideal for use in ASC applications in regenerative medicine because it improves biological functions, including proliferation, adipogenic/osteogenic differentiation, and paracrine function in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhijie Liang
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China; Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Donglin Huang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Wenhai Nong
- Department of Orthopaedics, the People's Hospital of Binyang County, Binyang, Guangxi, China
| | - Jinping Mo
- Department of Orthopaedics, the People's Hospital of Binyang County, Binyang, Guangxi, China
| | - Dandan Zhu
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Mengxin Wang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maojian Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongmian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
14
|
Oliver JD, Madhoun W, Graham EM, Hendrycks R, Renouard M, Hu MS. Stem Cells Regenerating the Craniofacial Skeleton: Current State-Of-The-Art and Future Directions. J Clin Med 2020; 9:jcm9103307. [PMID: 33076266 PMCID: PMC7602501 DOI: 10.3390/jcm9103307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The craniofacial region comprises the most complex and intricate anatomical structures in the human body. As a result of developmental defects, traumatic injury, or neoplastic tissue formation, the functional and aesthetic intricacies of the face and cranium are often disrupted. While reconstructive techniques have long been innovated in this field, there are crucial limitations to the surgical restoration of craniomaxillofacial form and function. Fortunately, the rise of regenerative medicine and surgery has expanded the possibilities for patients affected with hard and soft tissue deficits, allowing for the controlled engineering and regeneration of patient-specific defects. In particular, stem cell therapy has emerged in recent years as an adjuvant treatment for the targeted regeneration of craniomaxillofacial structures. This review outlines the current state of the art in stem cell therapies utilized for the engineered restoration and regeneration of skeletal defects in the craniofacial region.
Collapse
Affiliation(s)
- Jeremie D. Oliver
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
- Correspondence: ; Tel.: +1-801-821-0630
| | - Wasila Madhoun
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Emily M. Graham
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
| | - Russell Hendrycks
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
| | - Maranda Renouard
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
| | - Michael S. Hu
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
15
|
Bangun K, Sukasah CL, Dilogo IH, Indrani DJ, Siregar NC, Pandelaki J, Iskandriati D, Kekalih A, Halim J. Bone Growth Capacity of Human Umbilical Cord Mesenchymal Stem Cells and BMP-2 Seeded Into Hydroxyapatite/Chitosan/Gelatin Scaffold in Alveolar Cleft Defects: An Experimental Study in Goat. Cleft Palate Craniofac J 2020; 58:707-717. [PMID: 34047209 DOI: 10.1177/1055665620962360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To evaluate bone regeneration in alveolar defects treated with human umbilical cord-derived mesenchymal stem cells (hUCMSCs), hydroxyapatite/chitosan/gelatin (HA/CS/Gel) scaffold, and bone morphogenic protein-2 (BMP-2) in Capra hircus models. DESIGN Randomized posttest-only control group design. SETTING Animal Hospital at Bogor Agricultural Institute. PARTICIPANTS Healthy and equally treated 24 female Capra hircus/goats. INTERVENTION Animals were randomly assigned to 3 experimental group design (iliac crest alveolar bone graft/ICABG [control], HA/Cs/Gel+BMP-2 [Novosys], and HA/Cs/Gel+BMP-2+UCMSCs). Graft materials were implanted in surgically made alveolar defects. MAIN OUTCOME MEASURES Postoperative functional score and operating time were assessed. New bone growth, bone density, inflammatory cells recruitment, and neoangiogenesis were evaluated based on radiological and histological approach at 2 time points, week 4 and 12. Statistical analysis was done between treatment groups. RESULTS Operating time was 34% faster and functional score 94.5% more superior in HA/Cs/Gel+BMP-2+hUCMSC group. Bone growth capacity in HA/Cs/Gel+BMP-2+UCMSCs mimicked ICABG, but ICABG showed possibility of bone loss between week 4 and 12. The HA/Cs/Gel+BMP-2+UCMSCs showed early bone repopulation and unseen inflammatory cells and angiogenesis on week 12. DISCUSSION AND CONCLUSION The HA/Cs/Gel+BMP-2+hUCMSCs were superior in enhancing new bone growth without donor site morbidity compared to ICABG. The presence of hUCMSCs in tissue-engineered alveolar bone graft (ABG), supported with paracrine activity of the resident stem cells, initiated earlier new bone repopulation, and completed faster bone regeneration. The HA/Cs/Gel scaffold seeded with UCMSCs+BMP-2 is a safe substitute of ICABG to close alveolar bone defects suitable for patients with cleft lip, alveolus, and palate.
Collapse
Affiliation(s)
- Kristaninta Bangun
- Department of Plastic and Reconstructive Surgery, Cleft and Craniofacial Center, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Chaula L Sukasah
- Department of Plastic and Reconstructive Surgery, Cleft and Craniofacial Center, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Ismail H Dilogo
- Unit Pelayanan Terpadu Teknologi Kedokteran Sel Punca (Stem Cell Research Center), 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Decky J Indrani
- Department of Dental Material Science and Technology, 95338Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Nurjati Chairani Siregar
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Anatomical Pathology Department, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jacub Pandelaki
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Radiology Department of 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Diah Iskandriati
- Primate Research Center of 360976Bogor Agricultural Institute, Bogor, Indonesia
| | - Aria Kekalih
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Community Medicine Department, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jessica Halim
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
16
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|