1
|
Wang J, Zhao Q, Liu H, Guo L, Ma C, Kang W. Regulating role of Pleurotus ostreatus insoluble dietary fiber in high fat diet induced obesity in rats based on proteomics and metabolomics analyses. Int J Biol Macromol 2024:136857. [PMID: 39454905 DOI: 10.1016/j.ijbiomac.2024.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This study aims to reveal the effects of Pleurotus ostreatus insoluble dietary fiber (POIDF) on liver protein and cecal metabolites in obese rats and its potential mechanism by intestinal microbes. It was found that POIDF contained the structural characteristics of cellulose and hemicellulose, as well as amorphous diffraction peaks. POIDF could reduce the body weight and organ index of obese rats, regulate dyslipidemia, and improve the pathological changes of liver and epididymis fat. Further experimental results showed that POIDF could regulate the abundance of bacteria related to lipid metabolism, and maintain intestinal homeostasis. The metabolomics results showed that the fatty acyls pathway in the cecum contents was the pathway with the highest concentration of small molecule metabolites. POIDF supplementation regulated the expression of liver key proteins, as well as biosynthesis of amino acids, steroid biosynthesis, arachidonic acid metabolism and PPAR signaling pathway. Omics association analysis found that POIDF could further regulate liver proteins and their signaling pathways, regulate the levels of fatty acyls and amino acid metabolites in the gut and the enrichment of related pathways, and play a therapeutic or preventive role in obesity after degradation by intestinal microbiota.
Collapse
Affiliation(s)
- Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Qingchun Zhao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Hui Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Lin Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
2
|
Srivastava M, Kumari M, Karn SK, Bhambri A, Mahale VG, Mahale S. Submerged cultivation and phytochemical analysis of medicinal mushrooms ( Trametes sp.). FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1414349. [PMID: 38919599 PMCID: PMC11196847 DOI: 10.3389/ffunb.2024.1414349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Mushrooms are widely available around the world and have various nutritional as well as therapeutic values. Many Asian cultures believe that medicinal mushrooms can prolong life and improve vitality. This study aims to characterize the phytochemical and polysaccharide content, mainly β-glucan content, of mycelial biomass and fruiting bodies collected from the Himalayan region, particularly Uttarakhand. Through molecular analysis of the LSU F/R-rDNA fragment sequence and phylogenetic analysis, the strain was identified as Trametes sp. We performed screening of phytochemicals and polysaccharides in mushroom and biomass extracts using high-performance liquid chromatography (HPLC) and a PC-based UV-Vis spectrophotometer. The macrofungal biomass was found to be high in saponin, anthraquinone, total phenolic, flavonoid, and β-glucan content. In biomass extract, we observed a high level of saponin (70.6µg/mL), anthraquinone (14.5µg/mL), total phenolic (12.45 µg/mL), and flavonoid (9.500 µg/mL) content. Furthermore, we examined the contents of alkaloids, tannins, terpenoids, and sterols in the biomass and mushroom extracts; the concentration of these compounds in the ethanol extract tested was minimal. We also looked for antioxidant activity, which is determined in terms of the IC50 value. Trametes sp. mushroom extract exhibits higher DPPH radical scavenging activity (62.9% at 0.5 mg/mL) than biomass extract (59.19% at 0.5 mg/mL). We also analyzed β-glucan in Trametes sp. from both mushroom and biomass extracts. The biomass extract showed a higher β-glucan content of 1.713 mg/mL than the mushroom extract, which is 1.671 mg/mL. Furthermore, β-glucan analysis was confirmed by the Megazyme β-glucan assay kit from both biomass and mushroom extract of Trametes sp. β-glucans have a promising future in cancer treatment as adjuncts to conventional medicines. Producing pure β-glucans for the market is challenging because 90-95% of β glucan sold nowadays is thought to be manipulated or counterfeit. The present study supports the recommendation of Trametes sp. as rich in β-glucan, protein, phytochemicals, and antioxidant activities that help individuals with cancer, diabetes, obesity, etc.
Collapse
Affiliation(s)
| | - Moni Kumari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | - Anne Bhambri
- Department of Biotechnology, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | | |
Collapse
|
3
|
Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN. Comparative antioxidant activity and phytochemical content of five extracts of Pleurotus ostreatus (oyster mushroom). Sci Rep 2024; 14:3794. [PMID: 38361132 PMCID: PMC10869810 DOI: 10.1038/s41598-024-54201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Reactive oxygen species reacts with numerous molecules in the body system causing oxidative damage, which requires antioxidants to ameliorate. Pleurotus ostreatus, a highly nutritious edible mushroom, has been reported to be rich in bioactive compounds. This study evaluated the comparative antioxidant activity and phytochemical contents of five extracts of P. ostreatus: aqueous (AE), chloroform (CE), ethanol (EE), methanol (ME) and n-hexane (HE). The phytochemical composition and antioxidant activity of the extracts were determined using standard in-vitro antioxidant assay methods. Results showed that the extracts contained alkaloids, tannins, saponins, flavonoids, terpenoids, phenolics, cardiac glycosides, carbohydrates, anthrocyanins, and betacyanins in varied amounts. CE had the highest flavonoid content (104.83 ± 29.46 mg/100 g); AE gave the highest phenol content of 24.14 ± 0.02 mg/100 g; tannin was highest in EE (25.12 ± 0.06 mg/100 g); HE had highest amounts of alkaloids (187.60 ± 0.28 mg/100 g) and saponins (0.16 ± 0.00 mg/100 g). Antioxidant analyses revealed that CE had the best hydroxyl radical activity of 250% at 100 µg/ml and ferric cyanide reducing power of 8495 µg/ml; ME gave the maximum DPPH activity (87.67%) and hydrogen peroxide scavenging activity (65.58%) at 500 µg/ml; EE had the highest nitric oxide radical inhibition of 65.81% at 500 µg/ml and ascorbate peroxidase activity of 1.60 (iU/l). AE had the best total antioxidant capacity (5.27 µg/ml GAE at 500 µg/ml) and ferrous iron chelating activity (99.23% at 100 µg/ml) while HE gave the highest guaiacol peroxidase activity of 0.20(iU/l). The comparative phytochemical and antioxidant characteristics (IC50) of the extracts followed the order: CE > AE > EE > ME > HE. Overall, chloroform was the best extraction solvent for P. ostreatus. The high content of phenolic compounds, flavonoids, and alkaloids in P. ostreatus makes it a rich source of antioxidants and potential candidate for the development of new therapies for a variety of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Magdalene Eno Effiong
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria.
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria.
| | - Chidinma Precious Umeokwochi
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria
| | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC) Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC) Covenant University, Canaanland, PMB 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
4
|
Pleurotus Ostreatus Ameliorates Obesity by Modulating the Gut Microbiota in Obese Mice Induced by High-Fat Diet. Nutrients 2022; 14:nu14091868. [PMID: 35565835 PMCID: PMC9103077 DOI: 10.3390/nu14091868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
Pleurotus ostreatus (PO), a common edible mushroom, contains rich nutritional components with medicinal properties. To explore the effect of PO on ameliorating obesity and modulating the gut microbiota, we administered the mice with a low-fat diet or high-fat diet containing different dosages of PO (mass fraction: 0%, 2.5%, 5% and 10%). The body weight, adipose tissue weight, GTT, ITT, blood lipids, serum biomarkers of liver/kidney function, the gut microbiota and function were measured and analyzed after 6 weeks of PO treatment. The results showed PO prevented obesity, maintained glucose homeostasis and beneficially modulated gut microbiota. PO modified the composition and functions of gut microbiota in obese mice and make them similar to those in lean mice, which contributed to weight loss. PO significantly increased the relative abundance of Oscillospira, Lactobacillus group and Bifidobacterium, while decreased the relative abundance of Bacteroides and Roseburia. The prediction of gut microbiota function showed PO upregulated lipid metabolism, carbohydrate metabolism, bile acid biosynthesis, while it downregulated adipocytokine signaling pathway and steroid hormone biosynthesis. Correlation analysis further suggested the potential relationship among obesity, gut microbiota and the function of gut microbiota. In conclusion, all the results indicated that PO ameliorated obesity at least partly by modulating the gut microbiota.
Collapse
|
5
|
Assemie A, Abaya G. The Effect of Edible Mushroom on Health and Their Biochemistry. Int J Microbiol 2022; 2022:8744788. [PMID: 35369040 PMCID: PMC8967584 DOI: 10.1155/2022/8744788] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Edible mushrooms are fungi that can be seen with the naked eye and are relatively easy to gather by hand. This review article highlights the health benefit and the biochemistry of several mushroom species. Agaricus bisporus, Pleurotus species. Lentinus edodes, and Volvariella species are the most acceptable varieties among the cultivated mushroom. Various biochemical methods such as methanol, ethanol, and water extract of different parts of the edible mushroom in the laboratory have been applied to determine and/or quantify the presence and effectiveness of their chemical compounds, food value, and medicinal properties. They contain varying amounts of carbohydrates, proteins, nucleic acids, lipids, minerals, terpenoids, phenolic compounds, steroids, and lectins and vitamins, as well as lowering cholesterol levels in the body. Due to the presence of those vital nutrients, mushrooms are the best food item with high nutritional value. These compounds have a wide range of therapeutic effects and can act as immunomodulatory, anticarcinogenic, antiviral, antioxidant, and anti-inflammatory agents. Routine consumption of edible mushrooms would give adequate protection due to the presence of all the necessary nutrients from them. Therefore, edible mushrooms are herbal antibiotics to many diseases as well as various cancers of humans.
Collapse
Affiliation(s)
- Anmut Assemie
- Department of Biology, Wachemo University, PO Box 667, Hossana, Ethiopia
| | - Galana Abaya
- Department of Biotechnology, Wachemo University, PO Box 667, Hossana, Ethiopia
| |
Collapse
|
6
|
Maigoda T, Judiono J, Purkon DB, Haerussana ANEM, Mulyo GPE. Evaluation of Peronema canescens Leaves Extract: Fourier Transform Infrared Analysis, Total Phenolic and Flavonoid Content, Antioxidant Capacity, and Radical Scavenger Activity. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Peronema canescens (Sungkai) leaves have been popular in Indonesia which contain various bioactive compounds with empirical therapeutic efficacy in dealing with COVID-19 and various other diseases. Total phenolic and flavonoid content and antioxidant activity using the DPPH method from P. canescens leaf extract have not been studied much.
AIM: This research has several objectives. The first is to compare the results of qualitative phytochemical analysis of the ethanol extract of the leaves of P. canescens (EEPL). The second is to measure the total phenol and flavonoid content. The third is to test the FTIR and antioxidant activity of the ethanol extract of P. canescens leaves in vitro using the DPPH method.
METHODS: Fresh plant material and simplicia, ethanol extract extracted by maceration method using 96% ethanol as solvent from P. canescens. The Dragendorff’s and Mayer test carried out the qualitative phytochemical analysis, FeCl3 test, Salkowski method, Liebermann–Burchard method, foam test, and NaOH reagent. The total phenolic and flavonoid levels were tested using the Folin–Ciocalteu method. In vitro antioxidant activity was carried out using the DPPH (1,1-diphenyl-2-picrylhydrazyl) method.
RESULTS: The results of qualitative phytochemical screening showed that alkaloids, flavonoids, saponins, tannins, and steroids were detected in the extract of P. canescens. The spectra from the FTIR test results showed various absorbance peak values indicating the bonding of specific functional groups, namely: 418.12, 599.94, 666.67, 1036.39, 1159.52, 1224.16, 1348.95, 1454.19, 1600.87, 1732.00, 2923.13, and 3353.01 cm-1. In the test results, total phenolic content was as much as 5.64% (mgEAG/g) and total flavonoid content of 142,247 mgEQ/g in a sample of 1 mg extract, which was equivalent to 1 mg quercetin. EEPL has antioxidant activity with the DPPH IC50 method of 116.7865 ppm.
CONCLUSION: The data obtained at this time can contribute to the exploitation of P. canescens leaves in the future as one of the nutraceutical products, supplements, and herbal medicines by specific industries related to improving the health status of the world community. The higher the bioactive substance in preparation, the more significant the effect of the pharmacological efficacy response. P. canescens ethanol extract has good total phenolic content, total flavonoid content, and antioxidant action.
Collapse
|
7
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
8
|
Syakri S, Syahrana NA, Ismail A, Tahir KA, Masri A. A Review: Testing Antioxidant Activity on Kawista Plants (Limonia acidissima L.) in Indonesia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Antioxidants are natural ingredients that can block the oxidation process of free radicals that enter the body so that damage to body cells can be prevented. Kawista plants are one of the plants that have antioxidant activity.
AIM: This article review aims to determine the compounds that have antioxidant activity found in Kawista plants, the method used in testing antioxidants on Kawista plants, and the IC50 value found in antioxidant testing on Kawista plants.
METHODS: The method used in this study is the Population, Intervention, Control, and Outcome method through inclusion and exclusion criteria using the keywords “Antioxidant activity of Limonia acidissima,” “Antioxidant activity of Feronia limonia,” “Antioxidant activity of Kawista,” “Testing Antioxidants in L. acidissima,” and “L. acidissima” with databases used for literature searches.
RESULTS: This review shows that Kawista plants have antioxidant activity of various compounds based on the test method used.
CONCLUSION: Compounds in Kawista plants that have antioxidant activity are phenols, especially phenolic acids, flavonoids, flavonols, triterpenoids, saponins, tannins, terpenes, steroids, alkaloids, and glycosides. Kawista plant activity tested had IC50 with an average value of very strong (16.45 g/mL), strong (77.85 g/mL), moderate (135.02 g/mL), weak (196.67 g/mL), and very weak (751.89 g/mL).
Collapse
|
9
|
Elhusseiny SM, El-Mahdy TS, Awad MF, Elleboudy NS, Farag MMS, Yassein MA, Aboshanab KM. Proteome Analysis and In Vitro Antiviral, Anticancer and Antioxidant Capacities of the Aqueous Extracts of Lentinula edodes and Pleurotus ostreatus Edible Mushrooms. Molecules 2021; 26:4623. [PMID: 34361776 PMCID: PMC8348442 DOI: 10.3390/molecules26154623] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.
Collapse
Affiliation(s)
- Shaza M. Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
| | - Taghrid S. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 11099, Saudi Arabia;
| | - Nooran S. Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Mahmoud A. Yassein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| |
Collapse
|
10
|
Indrisari M, Sartini S, Miskad UA, Djawad K, Amir Tahir K, Nurkhairi N, Muslimin L. Photoprotective and Inhibitory Activity of Tyrosinase in Extract and Fractions of Terminalia catappa L. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND: Chronic exposure to ultraviolet (UV) radiation causes various skin damages. One of the most significant risks to skin occurrence is cancer and photoaging. Recent strategies for photoprotection have included incorporating natural sunscreens and antityrosinase.
AIM: This study aimed to determine the sun protection factor (SPF) and inhibitory activity of tyrosinase of the extract and fractions of leaves of Terminalia catappa Linn.
METHOD: The dried leaves were macerated with 96% ethanol and fractionated using n-hexane, ethyl acetate, and water. The extract and fractions were screened for their phytochemical profile, and tyrosinase inhibitory activity was evaluated and expressed as IC50. The photoprotective activity of extract and fractions were measured by a UV spectrophotometric.
RESULTS: Among the tested samples, the ethyl acetate fraction showed ultraprotection on erythema transmission rate (%TE), sunblock on pigmentation transmission (%TP), and minimum protection on SPF. Ethyl acetate fraction showed the highest activity to inhibit tyrosinase (IC50 was 50.54±2.37 μg/mL). The phytochemical analysis of ethyl acetate fraction revealed the presence of phenolic and flavonoid compounds.
CONCLUSION: This study’s findings revealed a higher tyrosinase inhibitor and sun protection capacity of ethyl acetate fraction of leaves of T. catappa and suitable to develop as a cosmetic agent.
Collapse
|