1
|
Zhang P, Li X, Wang X, Yang Y, Wang J, Cao D. SHR-8068 combined with adebrelimab and bevacizumab in the treatment of refractory advanced colorectal cancer: study protocol for a single-arm, phase Ib/II study. Front Immunol 2024; 15:1450533. [PMID: 39445023 PMCID: PMC11496094 DOI: 10.3389/fimmu.2024.1450533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Background The third-line treatment for refractory colorectal cancer (CRC) has limited efficacy. This study aimed to evaluate the safety and efficacy of SHR-8068 (an anti-CTLA-4 antibody), combined with adebrelimab (an anti-PD-L1 antibody), and bevacizumab in refractory non-microsatellite instability-high (MSI-H) or proficient mismatch repair (pMMR) CRC. Method This study is a prospective, open-label, single-center phase Ib/II clinical trial. Patients with pathologically confirmed pMMR/non-MSI-H metastatic colorectal adenocarcinoma who have failed ≥2 lines prior standard systemic treatments will be enrolled (n=36). The Ib phase will evaluate two dosing regimens of SHR-8068 in combination therapy (n=9 each dosage): SHR-8068 (1 mg per kilogram, every six weeks, intravenously) or SHR-8068 (4 mg per kilogram, every twelve weeks, intravenously) combined with adebrelimab (1200 mg, every three weeks, intravenously) and bevacizumab (7.5 mg per kilogram, every three weeks, intravenously). The efficacy and adverse events (AEs) of these regimens will be assessed to determine the recommended phase II dose (RP2D) of SHR-8068. Those of RP2D group from the phase Ib will be included in the phase II. The study will go to include 18 additional patients according to the one-sample log-rank test design in the phase II. The primary endpoint of the Ib phase is safety, with secondary endpoints including the objective response rate (ORR), progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and quality of life (QOL). The primary endpoint for phase II was PFS, with secondary endpoints including ORR, OS, DCR, safety, and QOL. Identifying biomarkers to predict the efficacy of this regimen is the exploratory study endpoint. Discussion This proof-of-concept study would provide safety and efficacy signals of this novel combination treatment for the MSS CRCs in the late-line setting. And it may offer new insights on the clinical application of dual immunotherapy combined with anti-angiogenic therapy in the MSS CRC.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofen Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfei Wang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd,
Shanghai, China
| | - Dan Cao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Rath B, Plangger A, Klameth L, Hochmair M, Ulsperger E, Boeckx B, Neumayer C, Hamilton G. Small cell lung cancer: circulating tumor cell lines and expression of mediators of angiogenesis and coagulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:355-365. [PMID: 37205313 PMCID: PMC10185438 DOI: 10.37349/etat.2023.00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 05/21/2023] Open
Abstract
Aim Coagulation is frequently activated in cancer patients and has been correlated with an unfavorable prognosis. To evaluate whether a putative release of tissue factor (TF) by circulating tumor cells (CTCs) represents a target to impair the dissemination of small cell lung cancer (SCLC), the expression of relevant proteins in a panel of permanent SCLC and SCLC CTC cell lines that have been established at the Medical University of Vienna. Methods Five CTC and SCLC lines were analyzed using a TF enzyme-linked immunosorbent assay (ELISA) tests, RNA sequencing, and western blot arrays covering 55 angiogenic mediators. Furthermore, the influence of topotecan and epirubicin as well as hypoxia-like conditions on the expression of these mediators was investigated. Results The results demonstrate that the SCLC CTC cell lines express no significant amounts of active TF but thrombospondin-1 (TSP-1), urokinase-type plasminogen activator receptor (uPAR), vascular endothelial-derived growth factor (VEGF) and angiopoietin-2 in two cases. The major difference between the SCLC and SCLC CTC cell lines found was the loss of the expression of angiogenin in the blood-derived CTC lines. Topotecan and epirubicin decreased the expression of VEGF, whereas hypoxia-like conditions upregulated VEGF. Conclusions Active TF capable of triggering coagulation seems not to be expressed in SCLC CTC cell lines in significant levels and, thus, CTC-derived TF seems dispensable for dissemination. Nevertheless, all CTC lines form large spheroids, termed tumorospheres, which may become trapped in clots of the microvasculature and extravasate in this supportive microenvironment. The contribution of clotting to the protection and dissemination of CTCs in SCLC may be different from other solid tumors such as breast cancer.
Collapse
Affiliation(s)
- Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maximilian Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Hospital Floridsdorf, 1210 Vienna, Austria
| | | | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3580 Leuven, Belgium
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: Gerhard Hamilton, Institute of Pharmacology, Medical University of Vienna, Waehringer Street 13A, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Kannan MK, Ganeshan M, Arockiam AJV. The absence of cellular glucose triggers oncogene AEG-1 that instigates VEGFC in HCC: A possible genetic root cause of angiogenesis. Gene X 2022; 826:146446. [PMID: 35337853 DOI: 10.1016/j.gene.2022.146446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Astrocyte Elevated Gene-1 (AEG-1) is the master and multi-regulator of the various transcriptional factor primarily regulating chemoresistance, angiogenesis, metastasis, and invasion under the pathological condition, including liver cancer. This study was focused on investigating the process of tumor angiogenesis in liver carcinoma by studying the role of AEG-1 under GD/2DG conditions. METHOD AND RESULTS The PCR and western blot analysis revealed that glucose depletion (GD) induces the overexpression of AEG-1. Further, it leads to the constant expression of VEGFC through the activation of HIF-1α/CCR7 via the stimulations of PI3K/Akt signaling pathways. GLUT2 is the major transporter of a glucose molecule that is highly participating under GD through the expression of AEG-1 and constantly expresses glucokinase (GCK). The obtained data suggest that AEG-1 act as an angiogenesis and glycolysis regulator by modulating the expression of GCK through HIF-1α and GLUT2. 2-deoxy-D-glucose (2DG) is a glycolysis inhibitor that induces impaired glycolysis and cellular apoptosis by cellular oxidative stress. The administration of 2DG has led to the chemoresistance of AEG-1. CONCLUSION The total findings of the study judged that disruption of cellular energy metabolism induced by the absence of glucose or the presence of mutant glucose moiety (2DG) promotes the overexpression of AEG-1. The GD/2DG activates the VEGFC by inducing the HIF-1α and CCR7. Moreover, AEG-1 induces the expression of OPN, which regulates metastasis, angiogenesis, and actively participates in protective autophagy by promoting LC3 a/b.
Collapse
Affiliation(s)
- Devan Umapathy
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mano Chitra Karthikeyan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Food Chemistry and Molecular Cancer Biology Laboratory, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Mahesh Kumar Kannan
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mathan Ganeshan
- Cancer Biology Laboratory, Department of Biomedical Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Antony Joseph Velanganni Arockiam
- Department of Biochemistry, Molecular Oncology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
El-Emam GA, Girgis GNS, Hamed MF, El-Azeem Soliman OA, Abd El Gawad AEGH. Formulation and Pathohistological Study of Mizolastine-Solid Lipid Nanoparticles-Loaded Ocular Hydrogels. Int J Nanomedicine 2021; 16:7775-7799. [PMID: 34853513 PMCID: PMC8627895 DOI: 10.2147/ijn.s335482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 01/28/2023] Open
Abstract
Background Mizolastine (MZL) is a dual-action nonsedating topical antihistamine anti-inflammatory agent that is used to relieve allergic conditions, such as rhinitis and conjunctivitis. Solid lipid nanoparticles (SLNs) are advanced delivery system in ophthalmology, with the merits of increasing the corneal drug absorption and hence improved bioavailability with the objective of ocular drug targeting. Methods First, MZL was formulated as MZL-SLNs by hot homogenization/ultrasonication adopting a 32 full factorial design. Solid-state characterization, in vitro release, and stability studies have been performed. Then, the optimized MZL-SLNs formula has been incorporated into ocular hydrogels using 1.5% w/v Na alginate and 5% w/v polyvinylpyrrolidone K90. The gels were evaluated via in vitro release as well as in vivo studies by applying allergic conjunctivitis congestion in a rabbit-eye model. Results The optimized formula (F4) was characterized by the highest entrapment efficiency (86.5±1.47%), the smallest mean particle size (202.3±13.59 nm), and reasonable zeta potential (−22.03±3.65 mV). Solid-state characterization of the encapsulation of MZL in SLNs was undertaken. In vitro results showed a sustained release profile from MZL-SLNs up to 30 hours with a non-Fickian Higuchi kinetic model. Stability studies confirmed immutability of freeze-dried MZL-SLNs (F4) upon storage for 6 months. Finally, hydrogel formulations containing MZL-SLNs, proved ocular congestion disappearance with completely repaired conjunctiva after 24 hours. Moreover, pretreatment with MZL-SLNs–loaded hydrogel imparted markedly decreased TNF-α and VEGF-expression levels in rabbits conjunctivae compared with post-treatment with the same formula. Conclusion MZL-SLNs could be considered a promising stable sustained-release nanoparticulate system for preparing ocular hydrogel as effective antiallergy ocular delivery systems.
Collapse
Affiliation(s)
- Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed Fawzy Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
5
|
Abbaspour A, Esmaeilzadeh A, Sharafi A. Suicide gene therapy-mediated purine nucleoside phosphorylase/fludarabine system for in vitro breast cancer model with emphasis on evaluation of vascular endothelial growth factor promoter efficacy. 3 Biotech 2021; 11:140. [PMID: 33708463 DOI: 10.1007/s13205-021-02692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, a suicide gene therapy approach was optimized by a non-viral polyplex system based on pEGFP-N1 vector harboring purine nucleoside phosphorylase gene conducted by vascular endothelial growth factor promoter for an in vitro breast cancer model (4T1 cell line). The VEGF promoter and purine nucleoside phosphorylase gene were cloned into the vector from the source of 4T1 and E. coli genomic DNA, respectively. A gene construct was developed by replacing VEGF promoter instead of CMV promoter in pEGFP-N1vector. PNP gene was integrated in to the multiple cloning site of the obtained vector. On the other hand, a construct from pEGFP-N1 harboring PNP gene under the control of the original CMV promoter was developed. The transfection method using cationic polymer was optimized based on N/P ratio, cell cytotoxicity, polyplex size, zeta potential and the green fluorescent protein (GFP) expression by fluorescent microscopy and flowcytometry. Also, the effect of hypoxia condition induced by 0.5 mM H2O2 on the promoter efficiency was investigated. The results showed that the performed gene delivery system is capable of the gene transfection to more than 30% of the cancer cells with both VEGF-PNP-pEGFP-N1 and PNP-pEGFP-N1 plasmids. The hypoxia condition did not show a significant effect on the VEGF promoter. But, it revealed that bystander effect can improve the efficacy of this system and reduce drug IC50 to 2 and fourfold for plasmids VEGF-PNP-pEGFP-N1 and PNP-pEGFP-N1, respectively. These results showed that the bystander effect could almost compensate the low efficiency of non-viral gene delivery systems. We suggest that the tumor-specific gene expression system mediated by the VEGF promoter can be especially useful in the present model of breast cancer gene therapy.
Collapse
Affiliation(s)
- Akbar Abbaspour
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Chen Y, Hong X. Effects of carvedilol reduce conjunctivitis through changes in inflammation, NGF and VEGF levels in a rat model. Exp Ther Med 2016; 11:1987-1992. [PMID: 27168839 DOI: 10.3892/etm.2016.3140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
Carvedilol is a novel third generation β-blocker that acts as an antagonist of β and α adrenergic receptors, and is able to regulate various cell factors. In addition, it possesses antioxidant activity, is capable of reversing cardiac remodeling effects and has anti-arrhythmic effects. The present study aimed to investigate whether the effects of carvedilol were able to reduce conjunctivitis clinical scores. Initially, 24 Sprague Dawley (SD) rats were randomly divided into three equal groups as follows: Control group, model group and carvedilol group. The model and carvedilol group adult SD rats were injected with lipopolysaccharide (LPS) to induce conjunctivitis. In the carvedilol group, the eight SD rats with LPS-induced conjunctivitis also received 50 mg/kg/day of carvedilol for 4 weeks. Next, the effects carvedilol were assessed utilizing a system of clinical sign scores, and an enzyme-linked immunosorbent assay was used to determine the expression levels of interleukin-1β (IL-1β), IL-6, IL-8 and tumor necrosis factor-α (TNF-α). Finally, nuclear factor-κB (NF-κB), nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were analyzed by western blotting. Carvedilol was observed to significantly reduce clinical sign scores in a dose-dependent manner (P<0.01), and reduce IL-1β, IL-6, IL-8 and TNF-α expression levels (P<0.01) in the LPS-induced rat model of conjunctivitis. Carvedilol was also able to significantly reduce the protein expression levels of NF-κB, and induce the protein expression levels of NGF and VEGF in the LPS-induced rat model of conjunctivitis (P<0.01). In conclusion, the effects of carvedilol may reduce conjunctivitis clinical scores through inflammation, NGF and VEGF in LPS-induced rat models.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Jinhua Traditional Chinese Medical Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xianfei Hong
- Department of Ophthalmology, Jinhua Traditional Chinese Medical Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
7
|
Human Mesenchymal Stromal Cells Transplantation May Enhance or Inhibit 4T1 Murine Breast Adenocarcinoma through Different Approaches. Stem Cells Int 2015; 2015:796215. [PMID: 26000020 PMCID: PMC4427122 DOI: 10.1155/2015/796215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
The use of Mesenchymal Stromal Cells (MSCs) aiming to treat cancer has shown very contradictory results. In an attempt to clarify the contradictory results reported in the literature and the possible role of human fallopian tube Mesenchymal Stromal Cells (htMSCs) against breast cancer, the aim of this study was to evaluate the clinical effect of htMSCs in murine mammary adenocarcinoma using two different approaches: (1) coinjections of htMSCs and 4T1 murine tumor cell lineage and (2) injections of htMSCs in mice at the initial stage of mammary adenocarcinoma development. Coinjected animals had a more severe course of the disease and a reduced survival, while tumor-bearing animals treated with 2 intraperitoneal injections of 106 htMSCs showed significantly reduced tumor growth and increased lifespan as compared with control animals. Coculture of htMSCs and 4T1 tumor cells revealed an increase in IL-8 and MCP-1 and decreased VEGF production. For the first time, we show that MSCs isolated from a single source and donor when injected in the same animal model and tumor can lead to opposite results depending on the experimental protocol. Also, our results demonstrated that htMSCs can have an inhibitory effect on the development of murine mammary adenocarcinoma.
Collapse
|
8
|
Vascular endothelial growth factor: therapeutic possibilities and challenges for the treatment of ischemia. Cytokine 2014; 71:385-93. [PMID: 25240960 DOI: 10.1016/j.cyto.2014.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/02/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a notable chemokine that plays critical roles in angiogenesis and vasculogenesis. The contemporary body of literature contains a substantial amount of information regarding its chemical properties as well as its fundamental role in vascular development. Studies strongly indicate its potential use as a therapeutic agent, especially in the vascular restoration of injured and ischemic tissues. VEGF therapy could be most beneficial for diseases whose pathologies revolve around tissue inflammation and necrosis, such as myocardial infarction and stroke, as well as ischemic bowel diseases such as acute mesenteric ischemia and necrotizing enterocolitis. However, a delicate balance exists between the therapeutic benefits of VEGF and the hazards of tumor growth and neo-angiogenesis. Effective future research surrounding VEGF may allow for the development of effective therapies for ischemia which simultaneously limit its more deleterious side effects. This review will: (1) summarize the current understanding of the molecular aspects and function of VEGF, (2) review potential benefits of its use in medical therapy, (3) denote its role in tumorigenesis and inflammation when overexpressed, and (4) elucidate the qualities which make it a viable compound of study for diagnostic and therapeutic applications.
Collapse
|