1
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The risk factors of osteoarthritis (OA) are different and obesity, lifestyle, inflammation, cell death mechanisms and diabetes mellitus are among them. The changes in the biological mechanisms are considered as main regulators of OA pathogenesis. The dysregulation of autophagy is observed in different human diseases. During the pathogenesis of OA, the autophagy levels (induction or inhibition) change. The supportive and pro-survival function of autophagy can retard the progression of OA. The protective autophagy prevents the cartilage degeneration. Moreover, autophagy demonstrates interactions with cell death mechanisms and through inhibition of apoptosis and necroptosis, it improves OA. The non-coding RNA molecules can regulate autophagy and through direct and indirect control of autophagy, they dually delay/increase OA pathogenesis. The mitochondrial integrity can be regulated by autophagy to alleviate OA. Furthermore, therapeutic compounds, especially phytochemicals, stimulate protective autophagy in chondrocytes to prevent cell death. The protective autophagy has ability of reducing inflammation and oxidative damage, as two key players in the pathogenesis of OA.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China.
| |
Collapse
|
2
|
Hsu GCY. A Novel Burn / Synovectomy Mouse Model for Temporomandibular Joint Osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552340. [PMID: 37609135 PMCID: PMC10441340 DOI: 10.1101/2023.08.07.552340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Temporomandibular Disorders (TMDs) is present in 33% of the U.S. population. Currently available animal models do not faithfully simulate the native disease progression of TMJ OA. The initiation of TMJ OA requires both local trauma and systemic inflammation. In this study, we present a novel mouse model which reproduces these two conditions. This is achieved by a procedure involving both synovectomy (local trauma) and a distant burn injury (systemic inflammation). Its efficacy at inducing TMJ OA was assessed with histomorphology and radiographic evaluation at 1,3, and 9 weeks after the procedure. We found that burn/synovectomy mice demonstrated significantly more degenerative changes in TMJ than uninjured control mice or synovotomy mice. The observed histology in burn/synoectomy mice mimicked native TMJ OA disease progression in a faithful manner. This animal model is invaluable in future research of the mechanism and risk factors of TMJ OA.
Collapse
|
3
|
Poulsen RC, Jain L, Dalbeth N. Re-thinking osteoarthritis pathogenesis: what can we learn (and what do we need to unlearn) from mouse models about the mechanisms involved in disease development. Arthritis Res Ther 2023; 25:59. [PMID: 37046337 PMCID: PMC10100340 DOI: 10.1186/s13075-023-03042-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Efforts to develop effective disease-modifying drugs to treat osteoarthritis have so far proved unsuccessful with a number of promising drug candidates from pre-clinical studies failing to show efficacy in clinical trials. It is therefore timely to re-evaluate our current understanding of osteoarthritis pathogenesis and the similarities and differences in disease development between commonly used pre-clinical mouse models and human patients. There is substantial heterogeneity between patients presenting with osteoarthritis and mounting evidence that the pathways involved in osteoarthritis (e.g. Wnt signalling) differ between patient sub-groups. There is also emerging evidence that the pathways involved in osteoarthritis differ between the STR/ort mouse model (the most extensively studied mouse model of spontaneously occurring osteoarthritis) and injury-induced osteoarthritis mouse models. For instance, while canonical Wnt signalling is upregulated in the synovium and cartilage at an early stage of disease in injury-induced osteoarthritis mouse models, this does not appear to be the case in the STR/ort mouse. Such findings may prove insightful for understanding the heterogeneity in mechanisms involved in osteoarthritis pathogenesis in human disease. However, it is important to recognise that there are differences between mice and humans in osteoarthritis pathogenesis. A much more extensive array of pathological changes are evident in osteoarthritic joints in individual mice with osteoarthritis compared to individual patients. There are also specified differences in the pathways involved in disease development. For instance, although increased TGF-β signalling is implicated in osteoarthritis development in both mouse models of osteoarthritis and human disease, in mice, this is mainly mediated through TGF-β3 whereas in humans, it is through TGF-β1. Studies in other tissues have shown TGF-β1 is more potent than TGF-β3 in inducing the switch to SMAD1/5 signalling that occurs in osteoarthritic cartilage and that TGF-β1 and TGF-β3 have opposing effects on fibrosis. It is therefore possible that the relative contribution of TGF-β signalling to joint pathology in osteoarthritis differs between murine models and humans. Understanding the similarities and differences in osteoarthritis pathogenesis between mouse models and humans is critical for understanding the translational potential of findings from pre-clinical studies.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Department of Pharmacology & Clinical Pharmacology, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - Lekha Jain
- Department of Pharmacology & Clinical Pharmacology, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Chen MF, Hu CC, Hsu YH, Chiu YT, Chen KL, Ueng SWN, Chang Y. Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis. Biomedicines 2023; 11:biomedicines11041111. [PMID: 37189729 DOI: 10.3390/biomedicines11041111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tien Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Steve W N Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Alves-Simões M. Rodent models of knee osteoarthritis for pain research. Osteoarthritis Cartilage 2022; 30:802-814. [PMID: 35139423 DOI: 10.1016/j.joca.2022.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability worldwide. Pain is the main symptom, yet no current treatment can halt disease progression or effectively provide symptomatic relief. Numerous animal models have been described for studying OA and some for the associated OA pain. This review aims to update on current models used for studying OA pain, focusing on mice and rats. These models include surgical, chemical, mechanical, and spontaneous OA models. The impact of sex and age will also be addressed in the context of OA modelling. Although no single animal model has been shown ideal for studying OA pain, increased efforts to phenotype OA will likely impact the choice of models for pre-clinical and basic research studies.
Collapse
Affiliation(s)
- M Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
7
|
Yamashita-Futani Y, Jokaji R, Ooi K, Kobayashi K, Kanakis I, Liu K, Kawashiri S, Bou-Gharios G, Nakamura H. Metalloelastase-12 is involved in the temporomandibular joint inflammatory response as well as cartilage degradation by aggrecanases in STR/Ort mice. Biomed Rep 2021; 14:51. [PMID: 33859822 PMCID: PMC8042671 DOI: 10.3892/br.2021.1427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/17/2021] [Indexed: 12/02/2022] Open
Abstract
Temporomandibular joint dysfunction (TMJD) is characterised by clinical symptoms involving both the masticatory muscles and the temporomandibular joint (TMJ). Disc internal derangement and osteoarthritis (OA) are the most common forms of TMJD. Currently, the molecular process associated with degenerative changes in the TMJ is unclear. Our previous study showed that elastin-digested peptides act on human TMJ synovial cells and lead to upregulation of interleukin-6 (IL-6) and metalloelastase-12 (MMP-12; an elastin-degrading enzyme) in vitro. However, there is limited information regarding the involvement of elastin-degradation by MMP-12 in the processes of inflammatory responses and cartilage degradation in vivo. STR/Ort mice were used as a model of TMJ OA in the present study. Significant articular cartilage degeneration was observed starting at 20 weeks of age in the STR/Ort mice and this progressed gradually until 40 weeks, compared with the age-matched CBA mice. Immunostaining analysis showed that MMP-12 and IL-6 were expressed in the chondrocytes in the superficial zones of the cartilage. Immunostaining also showed that aggrecanases [a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5] were expressed in the chondrocytes in the superficial zones of the cartilage. These findings suggest that an inflammatory and degradative process was initiated in the TMJ. Harmful mechanical stimuli, particularly pressure, may cause damage to the elastin fibres in the most elastin-rich superficial layer of the articular cartilage. Elastin-digested peptides are then generated as endogenous warning signals and they initiate a pro-inflammatory cascade. This leads to upregulation of pro-inflammatory mediators, such as IL-6 and MMP-12, which further trigger tissue damage resulting in elevated levels of elastin-digested peptides. IL-6 increases expression of the aggrecanases ADAMTS-4 and ADAMTS-5, following cartilage degradation. This leads to the establishment of a positive feedback loop and may result in chronic inflammation and cartilage degradation of the TMJ in vivo.
Collapse
Affiliation(s)
- Yoko Yamashita-Futani
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Rei Jokaji
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhiro Ooi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhiko Kobayashi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Ioannis Kanakis
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Ke Liu
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan.,Department of Oral and Maxillofacial Surgery, Ryukyu University Graduate School of Medical Science, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
8
|
A Pre-Existing Myogenic Temporomandibular Disorder Increases Trigeminal Calcitonin Gene-Related Peptide and Enhances Nitroglycerin-Induced Hypersensitivity in Mice. Int J Mol Sci 2020; 21:ijms21114049. [PMID: 32516986 PMCID: PMC7313473 DOI: 10.3390/ijms21114049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Migraine is commonly reported among patients with temporomandibular disorders (TMDs), especially myogenic TMD. The pathophysiologic mechanisms related to the comorbidity of the two conditions remain elusive. In the present study, we combined masseter muscle tendon ligation (MMTL)-produced myogenic TMD with systemic injection of nitroglycerin (NTG)-induced migraine-like hypersensitivity in mice. Facial mechanical allodynia, functional allodynia, and light-aversive behavior were evaluated. Sumatriptan, an FDA-approved medication for migraine, was used to validate migraine-like hypersensitivity. Additionally, we examined the protein level of calcitonin gene-related peptide (CGRP) in the spinal trigeminal nucleus caudalis using immunohistochemistry. We observed that mice with MMTL pretreatment have a prolonged NTG-induced migraine-like hypersensitivity, and MMTL also enabled a non-sensitizing dose of NTG to trigger migraine-like hypersensitivity. Systemic injection of sumatriptan inhibited the MMTL-enhanced migraine-like hypersensitivity. MMTL pretreatment significantly upregulated the protein level of CGRP in the spinal trigeminal nucleus caudalis after NTG injection. Our results indicate that a pre-existing myogenic TMD can upregulate NTG-induced trigeminal CGRP and enhance migraine-like hypersensitivity.
Collapse
|
9
|
Bapat S, Hubbard D, Munjal A, Hunter M, Fulzele S. Pros and cons of mouse models for studying osteoarthritis. Clin Transl Med 2018; 7:36. [PMID: 30460596 PMCID: PMC6246759 DOI: 10.1186/s40169-018-0215-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic conditions in the world today. It results in breakdown of cartilage in joints and causes the patient to experience intense pain and even disability. The pathophysiology of OA is not fully understood; therefore, there is currently no cure for OA. Many researchers are investigating the pathophysiology of the disease and attempting to develop methods to alleviate the symptoms or cure the OA entirely using animal models. Most studies on OA use animal models; this is necessary as the disease develops very slowly in humans and presents differently in each patient. This makes it difficult to effectively study the progression of osteoarthritis. Animal models can be spontaneous, in which OA naturally occurs in the animal. Genetic modifications can be used to make the mice more susceptible to developing OA. Osteoarthritis can also be induced via surgery, chemical injections, or non-invasive trauma. This review aims to describe animal models of inducing osteoarthritis with a focus on the models used on mice and their advantages and disadvantages that each model presents.
Collapse
Affiliation(s)
- Santul Bapat
- Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA
| | - Daniel Hubbard
- Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA
| | - Akul Munjal
- Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA
| | - Monte Hunter
- Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA
| | - Sadanand Fulzele
- Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA. .,Institute of Regenerative and Reparative Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Staines K, Poulet B, Wentworth D, Pitsillides A. The STR/ort mouse model of spontaneous osteoarthritis - an update. Osteoarthritis Cartilage 2017; 25:802-808. [PMID: 27965138 PMCID: PMC5446355 DOI: 10.1016/j.joca.2016.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes.
Collapse
Affiliation(s)
- K.A. Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK,Address correspondence and reprint requests to: K.A. Staines, School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK.Edinburgh Napier UniversitySchool of Applied SciencesSighthill CampusEdinburghEH11 4BNUK
| | - B. Poulet
- Institute of Ageing and Chronic Diseases, Musculoskeletal Biology 1, University of Liverpool, Room 286, Second Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - D.N. Wentworth
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - A.A. Pitsillides
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
11
|
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11:19. [PMID: 26837951 PMCID: PMC4738796 DOI: 10.1186/s13018-016-0346-5] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Collapse
Affiliation(s)
- Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA. .,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA. .,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|