1
|
Yanus GA, Suspitsin EN, Imyanitov EN. The Spectrum of Disease-Associated Alleles in Countries with a Predominantly Slavic Population. Int J Mol Sci 2024; 25:9335. [PMID: 39273284 PMCID: PMC11394759 DOI: 10.3390/ijms25179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
There are more than 260 million people of Slavic descent worldwide, who reside mainly in Eastern Europe but also represent a noticeable share of the population in the USA and Canada. Slavic populations, particularly Eastern Slavs and some Western Slavs, demonstrate a surprisingly high degree of genetic homogeneity, and, consequently, remarkable contribution of recurrent alleles associated with hereditary diseases. Along with pan-European pathogenic variants with clearly elevated occurrence in Slavic people (e.g., ATP7B c.3207C>A and PAH c.1222C>T), there are at least 52 pan-Slavic germ-line mutations (e.g., NBN c.657_661del and BRCA1 c.5266dupC) as well as several disease-predisposing alleles characteristic of the particular Slavic communities (e.g., Polish SDHD c.33C>A and Russian ARSB c.1562G>A variants). From a clinical standpoint, Slavs have some features of a huge founder population, thus providing a unique opportunity for efficient genetic studies.
Collapse
Affiliation(s)
- Grigoriy A Yanus
- Laboratory of Molecular Diagnostics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N Suspitsin
- Department of Medical Genetics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Medical Genetics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| |
Collapse
|
2
|
Terasaki M, Izumi M, Yamagishi SI. A Clinical Case of Probable Sitosterolemia. Int J Mol Sci 2024; 25:1535. [PMID: 38338819 PMCID: PMC10855567 DOI: 10.3390/ijms25031535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Sitosterolemia is a rare genetic lipid disorder characterized by elevated plant sterols in the serum. A 24-year-old Japanese woman was referred to our hospital due to a high serum low-density lipoprotein cholesterol (LDL-C) level of 332 mg/dL. At first, she was suspected to suffer from familial hypercholesterolemia, and thus received lipid-lowering agents. Although her LDL-C level remained high (220 mg/dL) with diet therapy plus 10 mg/day rosuvastatin, it was drastically decreased to 46 mg/dL with the addition of 10 mg/day ezetimibe. Finally, her LDL-C level was well-controlled at about 70 mg/dL with 10 mg/day ezetimibe alone. Furthermore, while her serum sitosterol level was elevated at 10.5 μg/mL during the first visit to our hospital, it decreased to 3.6 μg/mL with the 10 mg/day ezetimibe treatment alone. These observations suggest that she might probably suffer from sitosterolemia. Therefore, targeted gene sequencing analysis was performed using custom panels focusing on the exome regions of 21 lipid-associated genes, including ABCG5, ABCG8, and familial hypercholesterolemia-causing genes (LDL receptor, LDLRAP1, PCSK9, and apolipoprotein B). We finally identified a heterozygous ABCG8 variant (NM_022437.2:c.1285A>G or NP_071882.1:p.Met429Val) in our patient. The same gene mutation was detected in her mother. We report here a rare case exhibiting probable sitosterolemia caused by a heterozygous Met429Val variant in the ABCG8 gene and additional unknown variants.
Collapse
Affiliation(s)
- Michishige Terasaki
- Division of Diabetes, Metabolism and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Shinagawa, Tokyo 142-8666, Japan;
| | - Mikiko Izumi
- Center for Clinical Genetics, Showa University Hospital, 1-5-8 Shinagawa, Tokyo 142-8666, Japan;
| | - Sho-ichi Yamagishi
- Division of Diabetes, Metabolism and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Shinagawa, Tokyo 142-8666, Japan;
| |
Collapse
|
3
|
Miroshnikova VV, Vasiluev PA, Linkova SV, Soloviov VM, Ivanova ON, Tolmacheva ER, Udalova VY, Baranova PV, Aleksandrova DY, Strokova TV, Miklashevich IM, Izumchenko AD, Dracheva KV, Grunina MN, Smirnova NN, Kuchina AS, Zakharova EY, Pchelina SN. Pediatric Patients with Sitosterolemia: Next-Generation Sequencing and Biochemical Examination in Clinical Practice. J Pers Med 2023; 13:1492. [PMID: 37888103 PMCID: PMC10608675 DOI: 10.3390/jpm13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Here, we report the pediatric cases of sitosterolemia, a rare autosomal-recessive genetic disorder, characterized by high concentrations of plant sterols in blood and heterogeneity manifestations. All three patients (two girls aged 2 and 6 years old, and one boy aged 14 years old) were initially diagnosed with hypercholesterinemia. Next-generation sequencing (NGS) revealed homozygous (p.Leu572Pro/p.Leu572Pro) and compound (p.Leu572Pro/p.Gly512Arg and p.Leu572Pro/p.Trp361*) variants in the ABCG8 gene that allowed for the diagnosis of sitosterolemia. Two patients whose blood phytosterol levels were estimated before the diet demonstrated high levels of sitosterol/campesterol (69.6/29.2 and 28.3/12.4 μmol/L, respectively). Here, we demonstrate that NGS-testing led to the proper diagnosis that is essential for patients' management. The variant p.Leu572Pro might be prevalent among patients with sitosterolemia in Russia.
Collapse
Affiliation(s)
- Valentina V. Miroshnikova
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia; (A.D.I.); (K.V.D.); (N.N.S.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia;
| | - Petr A. Vasiluev
- Research Center for Medical Genetics, Moscow 115522, Russia; (P.A.V.); (P.V.B.); (D.Y.A.); (A.S.K.); (E.Y.Z.)
| | - Svetlana V. Linkova
- Children Municipal Multi-Specialty Clinical Center of High Medical Technology Named after K.A. Rauhfus, Saint-Petersburg 191036, Russia
| | - Vladislav M. Soloviov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Moscow 125412, Russia (I.M.M.)
| | - Olga N. Ivanova
- Research Center for Medical Genetics, Moscow 115522, Russia; (P.A.V.); (P.V.B.); (D.Y.A.); (A.S.K.); (E.Y.Z.)
| | - Ekaterina R. Tolmacheva
- “National Medical Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Health of the Russian Federation, Moscow 117198, Russia;
| | | | - Polina V. Baranova
- Research Center for Medical Genetics, Moscow 115522, Russia; (P.A.V.); (P.V.B.); (D.Y.A.); (A.S.K.); (E.Y.Z.)
| | - Darya Y. Aleksandrova
- Research Center for Medical Genetics, Moscow 115522, Russia; (P.A.V.); (P.V.B.); (D.Y.A.); (A.S.K.); (E.Y.Z.)
| | - Tatiana V. Strokova
- Federal Reresearch Centre of Nutrition and Biotechnology, Moscow 109240, Russia;
| | - Irina M. Miklashevich
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Moscow 125412, Russia (I.M.M.)
| | - Artem D. Izumchenko
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia; (A.D.I.); (K.V.D.); (N.N.S.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia;
| | - Kseniia V. Dracheva
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia; (A.D.I.); (K.V.D.); (N.N.S.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia;
| | - Maria N. Grunina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia;
| | - Nataliya N. Smirnova
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia; (A.D.I.); (K.V.D.); (N.N.S.)
| | - Anna S. Kuchina
- Research Center for Medical Genetics, Moscow 115522, Russia; (P.A.V.); (P.V.B.); (D.Y.A.); (A.S.K.); (E.Y.Z.)
| | - Ekaterina Y. Zakharova
- Research Center for Medical Genetics, Moscow 115522, Russia; (P.A.V.); (P.V.B.); (D.Y.A.); (A.S.K.); (E.Y.Z.)
| | - Sofya N. Pchelina
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia; (A.D.I.); (K.V.D.); (N.N.S.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia;
| |
Collapse
|
4
|
Ivanoshchuk DE, Kolker AB, Timoshchenko OV, Semaev SE, Shakhtshneider EV. Searching for new genes associated with the familial hypercholesterolemia phenotype using whole-genome sequencing and machine learning. Vavilovskii Zhurnal Genet Selektsii 2023; 27:522-529. [PMID: 37808210 PMCID: PMC10551936 DOI: 10.18699/vjgb-23-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 10/10/2023] Open
Abstract
One of the most common congenital metabolic disorders is familial hypercholesterolemia. Familial hypercholesterolemia is a condition caused by a type of genetic defect leading to a decreased rate of removal of low-density lipoproteins from the bloodstream and a pronounced increase in the blood level of total cholesterol. This disease leads to the early development of cardiovascular diseases of atherosclerotic etiology. Familial hypercholesterolemia is a monogenic disease that is predominantly autosomal dominant. Rare pathogenic variants in the LDLR gene are present in 75-85 % of cases with an identified molecular genetic cause of the disease, and variants in other genes (APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, and others) occur at a frequency of < 5 % in this group of patients. A negative result of genetic screening for pathogenic variants in genes of the low-density lipoprotein receptor and its ligands does not rule out a diagnosis of familial hypercholesterolemia. In 20-40 % of cases, molecular genetic testing fails to detect changes in the above genes. The aim of this work was to search for new genes associated with the familial hypercholesterolemia phenotype by modern high-tech methods of sequencing and machine learning. On the basis of a group of patients with familial hypercholesterolemia (enrolled according to the Dutch Lipid Clinic Network Criteria and including cases confirmed by molecular genetic analysis), decision trees were constructed, which made it possible to identify cases in the study population that require additional molecular genetic analysis. Five probands were identified as having the severest familial hypercholesterolemia without pathogenic variants in the studied genes and were analyzed by whole-genome sequencing on the HiSeq 1500 platform (Illumina). The whole-genome sequencing revealed rare variants in three out of five analyzed patients: a heterozygous variant (rs760657350) located in a splicing acceptor site in the PLD1 gene (c.2430-1G>A), a previously undescribed single-nucleotide deletion in the SIDT1 gene [c.2426del (p.Leu809CysfsTer2)], new missense variant c.10313C>G (p.Pro3438Arg) in the LRP1B gene, and single-nucleotide deletion variant rs753876598 [c.165del (p.Ser56AlafsTer11)] in the CETP gene. All these variants were found for the first time in patients with a clinical diagnosis of familial hypercholesterolemia. Variants were identified that may influence the formation of the familial hypercholesterolemia phenotype.
Collapse
Affiliation(s)
- D E Ivanoshchuk
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A B Kolker
- Novosibirsk State Technical University, Novosibirsk, Russia
| | - O V Timoshchenko
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S E Semaev
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Shakhtshneider
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Glotov OS, Chernov AN, Glotov AS. Human Exome Sequencing and Prospects for Predictive Medicine: Analysis of International Data and Own Experience. J Pers Med 2023; 13:1236. [PMID: 37623486 PMCID: PMC10455459 DOI: 10.3390/jpm13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Today, whole-exome sequencing (WES) is used to conduct the massive screening of structural and regulatory genes in order to identify the allele frequencies of disease-associated polymorphisms in various populations and thus detect pathogenic genetic changes (mutations or polymorphisms) conducive to malfunctional protein sequences. With its extensive capabilities, exome sequencing today allows both the diagnosis of monogenic diseases (MDs) and the examination of seemingly healthy populations to reveal a wide range of potential risks prior to disease manifestation (in the future, exome sequencing may outpace costly and less informative genome sequencing to become the first-line examination technique). This review establishes the human genetic passport as a new WES-based clinical concept for the identification of new candidate genes, gene variants, and molecular mechanisms in the diagnosis, prediction, and treatment of monogenic, oligogenic, and multifactorial diseases. Various diseases are addressed to demonstrate the extensive potential of WES and consider its advantages as well as disadvantages. Thus, WES can become a general test with a broad spectrum pf applications, including opportunistic screening.
Collapse
Affiliation(s)
- Oleg S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Alexander N. Chernov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
| |
Collapse
|
6
|
Barbosa TKA, Hirata RDC, Ferreira GM, Borges JB, Oliveira VFD, Gorjão R, Marçal ERDS, Gonçalves RM, Faludi AA, Freitas RCCD, Dagli-Hernandez C, Bortolin RH, Bastos GM, Pithon-Curi TC, Nader HB, Hirata MH. LDLR missense variants disturb structural conformation and LDLR activity in T-lymphocytes of Familial hypercholesterolemia patients. Gene X 2023; 853:147084. [PMID: 36464169 DOI: 10.1016/j.gene.2022.147084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Familial hypercholesterolemia (FH) is caused by deleterious mutations in the LDLR that increase markedly low-density lipoprotein (LDL) cholesterol and cause premature atherosclerotic cardiovascular disease. Functional effects of pathogenic LDLR variants identified in Brazilian FH patients were assessed using in vitro and in silico studies. Variants in LDLR and other FH-related genes were detected by exon-target gene sequencing. T-lymphocytes were isolated from 26 FH patients, and 3 healthy controls and LDLR expression and activity were assessed by flow cytometry and confocal microscopy. The impact of LDLR missense variants on protein structure was assessed by molecular modeling analysis. Ten pathogenic or likely pathogenic LDLR variants (six missense, two stop-gain, one frameshift, and one in splicing region) and six non-pathogenic variants were identified. Carriers of pathogenic and non-pathogenic variants had lower LDL binding and uptake in activated T-lymphocytes compared to controls (p < 0.05), but these variants did not influence LDLR expression on cell surface. Reduced LDL binding and uptake was also observed in carriers of LDLR null and defective variants. Modeling analysis showed that p.(Ala431Thr), p.(Gly549Asp) and p.(Gly592Glu) disturb intramolecular interactions of LDLR, and p.(Gly373Asp) and p.(Ile488Thr) reduce the stability of the LDLR protein. Docking and molecular interactions analyses showed that p.(Cys184Tyr) and p.(Gly373Asp) alter interaction of LDLR with Apolipoprotein B (ApoB). In conclusion, LDLR null and defective variants reduce LDL binding capacity and uptake in activated T-lymphocytes of FH patients and LDLR missense variants affect LDLR conformational stability and dissociation of the LDLR-ApoB complex, having a potential role in FH pathogenesis.
Collapse
Affiliation(s)
- Thais Kristini Almendros Barbosa
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Elisangela Rodrigues da Silva Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | | | - André Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, United States
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; Department of Teaching and Research, Real e Benemerita Associaçao Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Helena Bonciani Nader
- Department of Biochemistry, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04044-020, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
7
|
Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. Int J Mol Sci 2022; 23:ijms232415549. [PMID: 36555187 PMCID: PMC9779616 DOI: 10.3390/ijms232415549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving 50-60 genes. Among the two disease subtypes, the severe disease subtype of LAL-D is known as Wolman disease, with typical manifestations involving hepatomegaly, splenomegaly, vomiting, diarrhea, and hematopoietic abnormalities, such as anemia. In contrast, the mild disease subtype of this disorder is known as cholesteryl ester storage disease, with hypercholesterolemia, hypertriglyceridemia, and high-density lipoprotein disappearance. The prevalence of LAL-D is rare, but several treatment options, including enzyme replacement therapy, are available. Accordingly, a number of screening methodologies have been developed for this disorder. This review summarizes the current discussion on LAL-D, covering genetics, screening, and the tertiary structure of human LAL enzyme and preclinical study for the future development of a novel therapy.
Collapse
|
8
|
Korneva VA, Zacharova FM, Mandelstam MY, Bogoslovskaya TY, Orlov AV, Vasilyev VB, Kuznetsova TY. Analysis of Clinical and Biochemical Characteristics of Patients With Genetically Confirmed Familial Hypercholesterolemia in Russian North Western District Residents. KARDIOLOGIIA 2022; 62:33-39. [DOI: 10.18087/cardio.2022.11.n2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 12/23/2022]
Abstract
Aim To compare results of clinical, laboratory, and genetic examination of patients with familial hypercholesterolemia (FHC).Material and methods 112 patients aged 40.2±17.9 years (49 men) were examined. The gene of low-density lipoprotein receptor (LDLR) was analyzed and evaluated using the Dutch Lipid Clinic Network (DLCN) criterion of lipid score ≥6. The LDLR gene mutation was searched for using the conformational polymorphism analysis followed by sequencing of the DNA of isolated LDLR gene exons.Results Mean variables of the blood lipid profile were total cholesterol (C), 10.12±2.32 mmol/l, LDL-C, 7.72±2.3 mmol/l. Corneal arcus was observed in 15 % of patients, tendon xanthomas in 31.8 %, and xanthelasma palpebrarum in 5.3 %. The types of LDLR gene mutations included missense mutations (42.8 %), mutations causing a premature termination of protein synthesis (41.1 %), and frameshift mutations (16.1 %). In the presence of a mutation in exon 4, patients with IHD compared to patients with no IHD had significantly higher levels of total C (10.88±2.08 mmol/l vs. 8.74±1.57 mmol/l, respectively, р=0.001) and LDL-C (8.60±2.14 mmol/l vs. 6.62±1.79 mmol/l, respectively, р=0.005). Patients with IHD compared to patients with no IHD and a mutation in LDLR gene exon 9 had only a higher LDL-C level (8.96±1.53 mmol/l vs. 6.92±1.59 mmol/l, respectively, р=0.022). A differentiated comparison of IHD patients using a logistic regression depending on the identified type of LDLR gene mutation produced formulas for calculating the odds ratio of IHD and myocardial infarction (MI) with adjustments for the patient’s age and baseline LDL.Conclusion The detection rate of the LDLR gene mutations was 42.8 % for missense mutations, 41.1 % for mutations causing a premature termination of protein synthesis, and 16.1 % for frameshift mutations. Blood lipid profiles did not differ between patients from different cities and with different types of LDLR gene mutations. Blood lipid profiles were different in IHD patients depending on the mutation type.
Collapse
Affiliation(s)
| | - F. M. Zacharova
- Institute of Experimental Medicine, Saint Petersburg;
Saint Petersburg State University, Saint Petersburg
| | | | | | - A. V. Orlov
- State Science Center of the Russian Federation, Institute of Biomedical Problems, Moscow
| | - V. B. Vasilyev
- Institute of Experimental Medicine, Saint Petersburg;Saint Petersburg State University, Saint Petersburg
| | | |
Collapse
|
9
|
Genetic Spectrum of Familial Hypercholesterolaemia in the Malaysian Community: Identification of Pathogenic Gene Variants Using Targeted Next-Generation Sequencing. Int J Mol Sci 2022; 23:ijms232314971. [PMID: 36499307 PMCID: PMC9736953 DOI: 10.3390/ijms232314971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
Collapse
|
10
|
Vasilyev VB, Zakharova FM, Bogoslovskaya TY, Mandelshtam MY. Analysis of the low density lipoprotein receptor gene (<i>LDLR</i>) mutation spectrum in Russian familial hypercholesterolemia. Vavilovskii Zhurnal Genet Selektsii 2022; 26:319-326. [PMID: 35774363 PMCID: PMC9167825 DOI: 10.18699/vjgb-22-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a very common human hereditary disease in Russia and in the whole world with most of mutations localized in the gene coding for the low density lipoprotein receptor (LDLR). The object of this review is to systematize the knowledge about LDLR mutations in Russia. With this aim we analyzed all available literature on the subject and tabulated the data. More than 1/3 (80 out of 203, i. e. 39.4 %) of all mutations reported from Russia were not described in other populations. To date, most LDLR gene mutations have been characterized in large cities: Moscow (130 entries), Saint Petersburg (50 entries), Novosibirsk (34 mutations) and Petrozavodsk (19 mutations). Other regions are poorly studied. The majority of pathogenic mutations
(142 out of 203 reported here or 70 %) were revealed in single pedigrees; 61 variants of mutations were described in two or more genealogies; only 5 mutations were found in 10 or more families. As everywhere, missense mutations prevail among all types of nucleotide substitutions in LDLR, but the highest national specificity is imparted by frameshift mutations: out of 27 variants reported, 19 (or 70 %) are specific for Russia. The most abundant in mutations are exons 4 and 9 of the gene due to their largest size and higher occurrence of mutations in them. Poland,the Czech Republic, Italy and the Netherlands share the highest number of mutations with the Russian population.
Target sequencing significantly accelerates the characterization of mutation spectra in FH, but due to the absence
of systematic investigations in the regions, one may suggest that most of LDLR mutations in the Russian population
have not been described yet.
Collapse
|
11
|
Analysis of Rare Variants in Genes Related to Lipid Metabolism in Patients with Familial Hypercholesterolemia in Western Siberia (Russia). J Pers Med 2021; 11:jpm11111232. [PMID: 34834584 PMCID: PMC8624238 DOI: 10.3390/jpm11111232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this work was to identify genetic variants potentially involved in familial hypercholesterolemia in 43 genes associated with lipid metabolism disorders. Targeted high-throughput sequencing of lipid metabolism genes was performed (80 subjects with a familial-hypercholesterolemia phenotype). For patients without functionally significant substitutions in the above genes, multiplex ligation-dependent probe amplification was conducted to determine bigger mutations (deletions and/or duplications) in the LDLR promoter and exons. A clinically significant variant in some gene associated with familial hypercholesterolemia was identified in 47.5% of the subjects. Clinically significant variants in the LDLR gene were identified in 19 probands (73.1% of all variants identified in probands); in three probands (11.5%), pathogenic variants were found in the APOB gene; and in four probands (15.4%), rare, clinically significant variants were identified in genes LPL, SREBF1, APOC3, and ABCG5. In 12 (85.7%) of 14 children of the probands, clinically significant variants were detectable in genes associated with familial hypercholesterolemia. The use of clinical criteria, targeted sequencing, and multiplex ligation-dependent probe amplification makes it possible to identify carriers of rare clinically significant variants in a wide range of lipid metabolism genes and to investigate their influence on phenotypic manifestations of familial hypercholesterolemia.
Collapse
|
12
|
Ramensky VE, Ershova AI, Zaicenoka M, Kiseleva AV, Zharikova AA, Vyatkin YV, Sotnikova EA, Efimova IA, Divashuk MG, Kurilova OV, Skirko OP, Muromtseva GA, Belova OA, Rachkova SA, Pokrovskaya MS, Shalnova SA, Meshkov AN, Drapkina OM. Targeted Sequencing of 242 Clinically Important Genes in the Russian Population From the Ivanovo Region. Front Genet 2021; 12:709419. [PMID: 34691145 PMCID: PMC8529250 DOI: 10.3389/fgene.2021.709419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
We performed a targeted sequencing of 242 clinically important genes mostly associated with cardiovascular diseases in a representative population sample of 1,658 individuals from the Ivanovo region northeast of Moscow. Approximately 11% of 11,876 detected variants were not found in the Single Nucleotide Polymorphism Database (dbSNP) or reported earlier in the Russian population. Most novel variants were singletons and doubletons in our sample, and virtually no novel alleles presumably specific for the Russian population were able to reach the frequencies above 0.1-0.2%. The overwhelming majority (99.3%) of variants detected in this study in three or more copies were shared with other populations. We found two dominant and seven recessive known pathogenic variants with allele frequencies significantly increased compared to those in the gnomAD non-Finnish Europeans. Of the 242 targeted genes, 28 were in the list of 59 genes for which the American College of Medical Genetics and Genomics (ACMG) recommended the reporting of incidental findings. Based on the number of variants detected in the sequenced subset of ACMG59 genes, we approximated the prevalence of known pathogenic and novel or rare protein-truncating variants in the complete set of ACMG59 genes in the Ivanovo population at 1.4 and 2.8%, respectively. We analyzed the available clinical data and observed the incomplete penetrance of known pathogenic variants in the 28 ACMG59 genes: only 1 individual out of 12 with such variants had the phenotype most likely related to the variant. When known pathogenic and novel or rare protein-truncating variants were considered together, the overall rate of confirmed phenotypes was about 19%, with maximum in the subset of novel protein-truncating variants. We report three novel protein truncating variants in APOB and one in MYH7 observed in individuals with hypobetalipoproteinemia and hypertrophic cardiomyopathy, respectively. Our results provide a valuable reference for the clinical interpretation of gene sequencing in Russian and other populations.
Collapse
Affiliation(s)
- Vasily E Ramensky
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra I Ershova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Marija Zaicenoka
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| | - Anna V Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anastasia A Zharikova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Vyatkin
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia A Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Irina A Efimova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Mikhail G Divashuk
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Olga V Kurilova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Olga P Skirko
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Galina A Muromtseva
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | | | | | - Maria S Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Svetlana A Shalnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Alexey N Meshkov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Oxana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| |
Collapse
|