1
|
Park SJ, Kweon S, Moyo MK, Kim HR, Choi JU, Lee NK, Maharjan R, Cho YS, Park JW, Byun Y. Immune modulation of the liver metastatic colorectal cancer microenvironment via the oral CAPOX-mediated cGAS-STING pathway. Biomaterials 2024; 310:122625. [PMID: 38820768 DOI: 10.1016/j.biomaterials.2024.122625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
We evaluated modulation of the immunosuppressive tumor microenvironment in both local and liver metastatic colorectal cancer (LMCC), focusing on tumor-associated macrophages, which are the predominant immunosuppressive cells in LMCC. We developed an orally administered metronomic chemotherapy regimen, oral CAPOX. This regimen combines capecitabine and a nano-micelle encapsulated, lysine-linked deoxycholate and oxaliplatin complex (OPt/LDC-NM). The treatment effectively modulated immune cells within the tumor microenvironment by activating the cGAS-STING pathway and inducing immunogenic cell death. This therapy modulated immune cells more effectively than did capecitabine monotherapy, the current standard maintenance chemotherapy for colorectal cancer. The macrophage-modifying effect of oral CAPOX was mediated via the cGAS-STING pathway. This is a newly identified mode of immune cell activation induced by metronomic chemotherapy. Moreover, oral CAPOX synergized with anti-PD-1 antibody (αPD-1) to enhance the T-cell-mediated antitumor immune response. In the CT26. CL25 subcutaneous model, combination therapy achieved a 91 % complete response rate with a confirmed memory effect against the tumor. This combination also altered the immunosuppressive tumor microenvironment in LMCC, which αPD-1 monotherapy could not achieve. Oral CAPOX and αPD-1 combination therapy outperformed the maximum tolerated dose for treating LMCC, suggesting metronomic therapy as a promising strategy.
Collapse
Affiliation(s)
- Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; School of Medicine, Oncology, Stanford University, CA, 94305, United States
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Na Kyeong Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, United States
| | - Young Seok Cho
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Almaguer G, Almaguer-Vargas G, Molina-Trinidad EM, Becerril-Flores MA, Montejano B, Madrigal-Santillan E, Hernández-Ceruelos A, Figueroa-Gutiérrez AH, Montejano E, Montejano-Rodríguez JR. Antitumor Effect of Epigallocatechin Gallate and Vincristine in Mice with L5178Y Lymphoma. PLANTS (BASEL, SWITZERLAND) 2023; 12:3757. [PMID: 37960113 PMCID: PMC10647321 DOI: 10.3390/plants12213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
The main objective of research into new therapies is the search for more efficacy and fewer toxic effects in cancer treatments. On one hand, vincristine (VCR) is a chemotherapeutic used in different kinds of tumors. On the other hand, epigallocatechin gallate (EGCG) is a green tea metabolite that has shown an antineoplastic effect in diverse investigations, so the objective of this work is to evaluate the antitumor effects of the EGCG/VCR combination on tumor volume and survival. To achieve this objective, the solid model of lymphoma L5178Y was used in BALB/c mice with different doses of VCR, EGCG, and their combination allowed tumor growth and survival time recording. After tumor collection, measurements, and immunohistochemistry for p53, Bcl2, and Cyclin D1 were performed. The results showed that the EGCG/vincristine combination had a greater antitumor effect than those effects of vincristine and EGCG. It can be attributed to the fact that the greatest inhibition of Bcl2 was present in gathering of EGCG harvest with vincristine. Therefore, the combination of EGCG with vincristine has a better antineoplastic effect by inhibiting tumor development and increasing survival on both substances independently.
Collapse
Affiliation(s)
- Georgina Almaguer
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| | - Gustavo Almaguer-Vargas
- Plant Breeding Department, Horticulture Institute, Chapingo Autonomous University, Federal Highway Mexico-Texcoco km 38.5, Chapingo, Texcoco 56230, Mexico
| | - Eva María Molina-Trinidad
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| | - Marco Antonio Becerril-Flores
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| | - Brenda Montejano
- Department of Pharmacy, Hospital San José, Santiago de Querétaro 76180, Mexico
| | - Eduardo Madrigal-Santillan
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| | - Alejandra Hernández-Ceruelos
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| | - Ana Hilda Figueroa-Gutiérrez
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| | - Ethoan Montejano
- Interdisciplinary Professional Unit of Biotechnology IPN, National Polytechnic Institute, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Mexico City 07340, Mexico;
| | - José Ramón Montejano-Rodríguez
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla 42183, Mexico
| |
Collapse
|
3
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2023; 63:2494-2508. [DOI: https:/doi.org/10.1080/10408398.2021.1976721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
5
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2021; 63:2494-2508. [PMID: 34529530 DOI: 10.1080/10408398.2021.1976721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of cancer with chemotherapeutic drugs is associated with numerous adverse effects as well as the eventual development of resistance to chemotherapy. There is a great need for complementary therapies such as botanicals and nutritional supplements with little or no side effects that prevent resistance to chemotherapy and reduce its adverse effects. Inflammation plays a major role in the development of chemoresistance and the adverse effects of chemotherapy. Phytochemicals have well-established anti-inflammatory effects; thus, they could be used as complementary therapies along with chemotherapy to increase its efficacy and reduce its toxicity. Botanical compounds inhibit the NF-κB signaling pathway, which plays an important role in the generation of inflammation, chemotherapy resistance, and modulation of cell survival and apoptosis. Botanicals have previously been studied extensively for their cancer chemopreventive activities and are generally considered safe for human consumption. The present review focuses on the modulation of inflammation by phytochemicals and their role in increasing the efficacy and reducing the toxicity of cancer chemotherapy.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
|
7
|
Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules 2020; 10:biom10071003. [PMID: 32640594 PMCID: PMC7407822 DOI: 10.3390/biom10071003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Aldose reductase (AKR1B1), the first enzyme in the polyol pathway, is likely involved in the onset of diabetic complications. Differential inhibition of AKR1B1 has been proposed to counteract the damaging effects linked to the activity of the enzyme while preserving its detoxifying ability. Here, we show that epigallocatechin gallate (EGCG), one of the most representative catechins present in green tea, acts as a differential inhibitor of human recombinant AKR1B1. A kinetic analysis of EGCG, and of its components, gallic acid (GA) and epigallocatechin (EGC) as inhibitors of the reduction of L-idose, 4-hydroxy2,3-nonenal (HNE), and 3-glutathionyl l-4-dihydroxynonanal (GSHNE) revealed for the compounds a different model of inhibition toward the different substrates. While EGCG preferentially inhibited L-idose and GSHNE reduction with respect to HNE, gallic acid, which was still active in inhibiting the reduction of the sugar, was less active in inhibiting HNE and GSHNE reduction. EGC was found to be less efficient as an inhibitor of AKR1B1 and devoid of any differential inhibitory action. A computational study defined different interactive modes for the three substrates on the AKR1B1 active site and suggested a rationale for the observed differential inhibition. A chromatographic fractionation of an alcoholic green tea extract revealed that, besides EGCG and GA, other components may exhibit the differential inhibition of AKR1B1.
Collapse
|
8
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2020; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
9
|
Rady I, Mohamed H, Rady M, Siddiqui IA, Mukhtar H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hadir Mohamed
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Mohamad Rady
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imtiaz A. Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
10
|
de Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG, Grougnet R, Thiéry V, Picot L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018; 129:383-400. [DOI: 10.1016/j.fitote.2018.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
11
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017. [DOI: 10.1080/10408398.2016.1231168 pmid: 27645804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhong-Quan Sui
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017; 58:924-941. [PMID: 27645804 DOI: 10.1080/10408398.2016.1231168] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Ren-You Gan
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| | - Hua-Bin Li
- c Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhong-Quan Sui
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China
| | - Harold Corke
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| |
Collapse
|
13
|
Tak E, Park GC, Kim SH, Jun DY, Lee J, Hwang S, Song GW, Lee SG. Epigallocatechin-3-gallate protects against hepatic ischaemia-reperfusion injury by reducing oxidative stress and apoptotic cell death. J Int Med Res 2016; 44:1248-1262. [PMID: 27807255 PMCID: PMC5536772 DOI: 10.1177/0300060516662735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia–reperfusion injury in mice. Methods The partial hepatic ischaemia–reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia–reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia–reperfusion injury (IR, n = 10), and EGCG with ischaemia–reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia–reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia–reperfusion injury in mice.
Collapse
Affiliation(s)
- Eunyoung Tak
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil-Chun Park
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Jun
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Lee
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shin Hwang
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Gyu Lee
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
García-Vilas JA, Quesada AR, Medina MÁ. Screening of synergistic interactions of epigallocatechin-3-gallate with antiangiogenic and antitumor compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.synres.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Tofolean IT, Ganea C, Ionescu D, Filippi A, Garaiman A, Goicea A, Gaman MA, Dimancea A, Baran I. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells. Pharmacol Res 2015; 103:300-17. [PMID: 26687095 DOI: 10.1016/j.phrs.2015.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022]
Abstract
We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain.
Collapse
Affiliation(s)
- Ioana Teodora Tofolean
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Constanta Ganea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Diana Ionescu
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Filippi
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Garaiman
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Goicea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Mihnea-Alexandru Gaman
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Dimancea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Irina Baran
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania.
| |
Collapse
|
16
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
17
|
Yuan F, Shi H, Ji J, Cai Q, Chen X, Yu Y, Liu B, Zhu Z, Zhang J. Capecitabine metronomic chemotherapy inhibits the proliferation of gastric cancer cells through anti-angiogenesis. Oncol Rep 2015; 33:1753-62. [PMID: 25634241 DOI: 10.3892/or.2015.3765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/12/2015] [Indexed: 11/05/2022] Open
Abstract
To evaluate the inhibitory effect and mechanism of capecitabine metronomic chemotherapy on gastric cancer cells. In vitro, the effects of 5-fluorouracil (Fu) metronomic chemotherapy on proliferation, apoptosis, tube formation ability, and angiogenesis were detected. In vivo, Ki-67, CD34 and VEGF were detected by immunohistochemical staining (IHC). Flow cytometry was used to detect the percentage of circulating endothelial progenitors (CEPs), and VEGF and PDGF were detected by ELISA in the peripheral blood of nude mice. The proliferation of the SGC-7901 and AGS gastric cancer cell lines in the metronomic 5-Fu group was decreased compared with the control group in vitro. The total length of the small tubes and tubular junction numbers were significantly lower in the metronomic group than the control group. The VEGF and PDGF levels in the cell culture supernatants were lower in the metronomic group than the control group. Compared with the control group, the CEP percentage was decreased in the peripheral blood of tumor-bearing nude mice following treatment with metronomic 5-Fu or capecitabine chemotherapy. No significant changes were found in the conventional or control group. In the peripheral blood of tumor-bearing nude mice, the VEGF and PDGF levels were decreased in the metronomic groups. Metronomic 5-Fu inhibited the proliferation of gastric cancer cells in vitro and in vivo, and their antitumor effects were non-inferior to those of conventional dose chemotherapy, with mild side effects. Thus, tumor inhibition may be attributed to anti-angiogenesis.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Hailong Shi
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Ji
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Qu Cai
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xuehua Chen
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyan Yu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Bingya Liu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Zhang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
18
|
Abdel-Rahman O. Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: preclinical and clinical aspects. Crit Rev Oncol Hematol 2015; 93:18-27. [PMID: 24970311 DOI: 10.1016/j.critrevonc.2014.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
The prognosis of advanced gastric cancer has been dreadful with the majority of patients dying of their disease within 1 year of the diagnosis. In the advanced stage several therapeutic options can be discussed, including molecular targeted agents, but biological predicting factors are lacking. A number of molecular targets have been studied over the last decade bringing to several phase II studies; however very few agents moved into phase III clinical trials. The VEGFR-2 inhibitor monoclonal antibody ramucirumab has been recently approved in advanced progressing gastric cancer. This article reviews the basic science as well as clinical data of VEGF signaling in advanced gastric cancer with special emphasis on the different VEGF targeting agents tested previously in this disease.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
19
|
Ranzato E, Magnelli V, Martinotti S, Waheed Z, Cain SM, Snutch TP, Marchetti C, Burlando B. Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: essential role of Cav3.2 channels. Cell Calcium 2014; 56:285-95. [PMID: 25260713 DOI: 10.1016/j.ceca.2014.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/29/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca(2+) channels toward a mechanistic study on the effect of EGCG on [Ca(2+)]i. Confocal Ca(2+) imaging showed that EGCG induces a [Ca(2+)]i spike which is due to extracellular Ca(2+) entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca(2+)channel blockers. siRNA knockdown of T-type Ca(2+) channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K(+) currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K(+) channel induced a reduction of the EGCG [Ca(2+)]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K(+) current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca(2+)]i by EGCG may be relevant in breast cancer treatment.
Collapse
Affiliation(s)
- Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Valeria Magnelli
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy
| | - Zeina Waheed
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Stuart M Cain
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Rm 219 - 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
20
|
Shi H, Jiang J, Ji J, Shi M, Cai Q, Chen X, Yu Y, Liu B, Zhu Z, Zhang J. Anti-angiogenesis participates in antitumor effects of metronomic capecitabine on colon cancer. Cancer Lett 2014; 349:128-35. [PMID: 24746899 DOI: 10.1016/j.canlet.2014.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/22/2014] [Accepted: 04/06/2014] [Indexed: 12/22/2022]
|
21
|
Maruyama T, Murata S, Nakayama K, Sano N, Ogawa K, Nowatari T, Tamura T, Nozaki R, Fukunaga K, Ohkohchi N. (-)-Epigallocatechin-3-gallate suppresses liver metastasis of human colorectal cancer. Oncol Rep 2013; 31:625-33. [PMID: 24337301 DOI: 10.3892/or.2013.2925] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 12/18/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has been shown to inhibit cell proliferation and induce apoptosis in several types of human tumors. The most common site of distant metastases in colorectal cancer is the liver. However, no previous studies have reported the ability of EGCG to suppress liver metastases of human colorectal cancer. The aim of the present study was to elucidate the potential use of EGCG as chemotherapy targeting liver metastases of human colorectal cancer. To assess the effect of EGCG on human colorectal cancer cell lines, RKO and HCT116, cell viability, cell proliferation and apoptosis were measured by cell counting kit-8, BrdU assay and TUNEL staining, respectively. Protein and gene expression were measured by western blot analysis and RT-PCR analysis, respectively. EGCG inhibited cell proliferation and induced apoptosis. EGCG dephosphorylated constitutively activated Akt and increased the activation of p38. EGCG also decreased the expression of vascular endothelial growth factor receptor 2. Additionally, the ability of EGCG to prevent the development of liver metastases of RKO tumors was evaluated in SCID mice. EGCG suppressed angiogenesis and induced apoptosis in liver metastases without associated body weight loss or hepatotoxicity. Furthermore, the liver metastatic area was significantly reduced by EGCG administration. Our findings indicate that EGCG may be useful in the treatment of liver metastases of human colorectal cancer.
Collapse
Affiliation(s)
- Takehito Maruyama
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Soichiro Murata
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nakayama
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoki Sano
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Koichi Ogawa
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Nowatari
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Tamura
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Reiji Nozaki
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kiyoshi Fukunaga
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
22
|
Chen FZ, Mo XM, Wang QP, Li J, Zhang L. Effects of rosiglitazone on the growth and lymphangiogenesis of human gastric cancer transplanted in nude mice. Oncol Rep 2013; 30:2705-12. [PMID: 24002492 DOI: 10.3892/or.2013.2704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer mainly metastasizes via lymphatic vessels. Thus, it is critical to identify efficacious chemopreventive agents for lymphangiogenesis. The present study was undertaken to explore the effects of rosiglitazone (ROSI) on the growth and lymphangiogenesis of human gastric cancer. We established a model of gastric cancer by subcutaneously inoculating the human gastric cancer cell line SGC-7901 into nude mice. Mice were randomly divided into 4 groups and each group received a different agent by oral gavage. The control group received normal saline and treatment groups received different doses of ROSI once every 2 days. The growth of the tumor in vivo was assessed by measuring tumor volume. After 42 days, the mice were sacrificed and the tumors were removed. H&E staining was used to observe the histomorphological features; immunohistochemistry staining for lymphatic vessel density (LVD) was used to evaluate tumor lymphangiogenesis, RT-PCR was performed to determine the mRNA expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 (VEGFR-3), and western blotting was used to detect the protein expression of VEGF-C and VEGFR-3. Compared with the control group, all treatment groups had smaller tumor volume and higher tumor growth inhibitory rate every day. The number of typical tumor cells in the control group was higher compared to that in the treatment groups, and the highest level of LVD was found in the control group. Furthermore, both the expression of VEGF-C and VEGFR-3 mRNA and proteins in the control group were significantly higher compared to those in the treatment groups. Markedly, these changes were correlated in a dose-dependent manner with ROSI. These results demonstrated that, through simultaneously blocking the expression of VEGF-C and VEGFR-3, ROSI suppresses lymphangiogenesis. This may represent a powerful therapeutic approach for controlling gastric cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Fang-Zhi Chen
- Department of Gastroenterology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | | | | | | | | |
Collapse
|