1
|
Liu L, Chen Y, Han Y, Zhang X, Wu Y, Lin J, Cao L, Wu M, Zheng H, Fang Y, Wei L, Sferra TJ, Jafri A, Ke X, Peng J, Shen A. Qing Hua Chang Yin ameliorates chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2024; 62:607-620. [PMID: 39034914 PMCID: PMC11265301 DOI: 10.1080/13880209.2024.2378012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted. OBJECTIVE To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms. MATERIALS AND METHODS A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (n = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining. RESULTS Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1β and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues. DISCUSSION AND CONCLUSIONS The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.
Collapse
Affiliation(s)
- Liya Liu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Yuying Han
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Xinran Zhang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yulun Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Jing Lin
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Liujing Cao
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Meizhu Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Huifang Zheng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yi Fang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Histology Core, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| |
Collapse
|
2
|
Song J, Xu X, He S, Zhang H, Wang N, Bai Y, Li B, Zhang S. Identification of the therapeutic effect and molecular mechanism of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116864. [PMID: 37393026 DOI: 10.1016/j.jep.2023.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) theory believes that clearing heat and promoting dampness is the main treatment method for chronic gastritis. Coptis chinensis Franch. has the effects of clearing heat, detoxifying, and anti-inflammatory; Magnolia officinalis var. biloba can be used to treat abdominal pain, cough, and asthma. Coptis chinensis Franch. and Magnolia officinalis var. biloba can regulate the balance of intestinal microbiota and inhibit inflammatory reactions. AIM This study will verify the therapeutic effect of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis, and explore its mechanism through transcriptome sequencing. METHODS Firstly, a rat chronic gastritis model was established, and the anal temperature and body weight changes of the rats before and after modeling were observed. Next, H&E staining, TUNEL assay and ELISA assay were performed on rat gastric mucosal tissues. Subsequently, the key fractions of Coptis chinensis Franch. and Magnolia officinalis var. biloba were obtained by high performance liquid chromatography (HPLC), and a GES-1 cell inflammation model was constructed to select the optimal monomer. Finally, the mechanism of action of Coptis chinensis Franch. and Magnolia officinalis var. biloba was explored through RNA seq. RESULTS Compared with the control group, the rats in the administered group were in better condition, with higher anal temperature, reduced inflammatory response in gastric mucosal tissue and reduced apoptosis. The optimal fraction Coptisine was subsequently determined by HPLC and GES-1 cell model. RNA-seq analysis revealed that DEG was significantly enriched in ribosomes, NF-κB signaling pathway, etc. The key genes TPT1 and RPL37 were subsequently obtained. CONCLUSIONS This study verified the therapeutic effects of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis by in vivo and in vitro experiments in rats, identified Coptisine as the optimal component, and obtained two potential target genes.
Collapse
Affiliation(s)
- Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Yunjing Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| | - Shengsheng Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
3
|
Han Y, Liu L, Chen Y, Zheng H, Yao M, Cao L, Sferra TJ, Ke X, Peng J, Shen A. Qing Hua Chang Yin alleviates chronic colitis of mice by protecting intestinal barrier function and improving colonic microflora. Front Pharmacol 2023; 14:1176579. [PMID: 37576825 PMCID: PMC10413571 DOI: 10.3389/fphar.2023.1176579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Qing Hua Chang Yin (QHCY) is a famous formula of traditional Chinese medicine (TCM) and has been proven to have protective effect on ulcerative colitis. However, its protective effect and potential therapeutic mechanisms in chronic colitis remain unclear. The purpose of this study is to explore the effects and underlying mechanisms of QHCY on dextran sulfate sodium (DSS)-induced chronic colitis mice model. Methods: The chronic colitis model was established by administration of 2% DSS for three consecutive cycles of 7 days with two intervals of 14 days for recovery by drinking water. The experiment lasted 49 days. The DSS + QHCY group received QHCY administration by oral gavage at doses of 1.6 g/kg/d, DSS + Mesalazine group was administrated Mesalazine by oral gavage at doses of 0.2 g/kg/d. The control and DSS group were given equal volume of distilled water. The body weight, stool consistency and blood in stool were monitored every 2 days. The disease activity index (DAI) was calculated. The colon length was measured after the mice were sacrificed. The histomorphology of colonic tissues was checked by the HE and PAS staining. Immunohistochemistry was performed to detect the expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), tight junction proteins (ZO-1, occludin) and Mucin2 (MUC2). 16S rRNA sequencing analysis was conducted to study the diversity and abundance of gut microbiota changes. Results: QHCY treatment not only significantly attenuated DSS-induced the weight loss, DAI score increase, colon shortening and histological damage in mice, but also decreased the expression of pro-inflammatory cytokines in colonic tissues and increased the expression of ZO-1, occludin, and MUC2. Furthermore, QHCY enhanced the diversity of gut microbes and regulated the structure and composition of intestinal microflora in mice with chronic colitis. Conclusion: QHCY has a therapeutic effect on a murine model of chronic colitis. It can effectively reduce the clinical and pathological manifestations of colitis and prevent alterations in the gut microbiota.
Collapse
Affiliation(s)
- Yuying Han
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Huifang Zheng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengying Yao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liujing Cao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Wang K, Chen X, Zuo L, Pan C, Liu G, Zhang X, Du J, Zhang C, Zhang B, Wang Z, Li M, Zhang A, Jiang N. Dietary sodium butyrate protects lipopolysaccharide-induced inflammatory response in lambs through inhibiting TLR4/NF-κB signalling pathway. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1955627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kexin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Xiang Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Lijun Zuo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Chunyuan Pan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Gan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Xinyu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Jiahua Du
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Cunhao Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Bofu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Zhao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Muyang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| | - Ning Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Feed Resource Efficient Utilization and Nutrition Manipulation in Cold Region of Heilongjiang Province, Daqing, China
| |
Collapse
|
5
|
Fang W, Zhao P, Shen A, Liu L, Chen H, Chen Y, Peng J, Sferra TJ, Sankararaman S, Luo Y, Ke X. Effects of Qing Hua Chang Yin on lipopolysaccharide‑induced intestinal epithelial tight junction injury in Caco‑2 cells. Mol Med Rep 2021; 23:205. [PMID: 33495820 PMCID: PMC7821280 DOI: 10.3892/mmr.2021.11844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Disruption of the intestinal mucosal barrier integrity is a pathogenic process in inflammatory bowel disease (IBD) development, and is therefore considered a drug discovery target for IBD. The well‑known traditional Chinese formulation Qing Hua Chang Yin (QHCY) has been suggested as a potential therapeutic agent for the treatment of ulcerative colitis. However, the possible underlying molecular mechanisms regarding its therapeutic effect remain unclear. Consequently, the present study investigated the effects of QHCY on lipopolysaccharide (LPS)‑induced loss of intestinal epithelial barrier integrity in vitro using the Caco‑2 cell model of intestinal epithelium. QHCY reversed the LPS‑induced decrease in transepithelial electrical resistance and significantly alleviated the increased fluorescently‑labeled dextran 4 flux caused by LPS. Moreover, QHCY upregulated the mRNA and protein expression levels of occludin, zona occludens‑1 and claudin‑1 in LPS‑exposed Caco‑2 cells. In conclusion, QHCY was able to protect intestinal epithelial barrier integrity following an inflammatory insult; the protective effects of QHCY may be mediated by modulation of the expression of tight junction proteins.
Collapse
Affiliation(s)
- Wenyi Fang
- Spleen and Stomach Research Room, Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Peilin Zhao
- Spleen and Stomach Research Room, Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Geriatric Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Geriatric Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongwei Chen
- Academy of Integrative Medicine, Geriatric Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Academy of Integrative Medicine, Geriatric Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Geriatric Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Yunfeng Luo
- Spleen and Stomach Research Room, Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Xiao Ke
- Spleen and Stomach Research Room, Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| |
Collapse
|
6
|
Li K, Yang J, Lei XF, Li SL, Yang HL, Xu CQ, Deng L. EZH2 inhibition promotes ANGPTL4/CREB1 to suppress the progression of ulcerative colitis. Life Sci 2020; 250:117553. [PMID: 32194081 DOI: 10.1016/j.lfs.2020.117553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
AIMS Enhancer of zeste homolog 2 (EZH2) is associated with ulcerative colitis development. However, the mechanism of EZH2 in ulcerative colitis progression remains unclear. MAIN METHODS Lipopolysaccharide (LPS)-treated Caco-2 cells and dextran sodium sulfate (DSS)-treated mice were used as model of ulcerative colitis. The levels of EZH2, angiopoietin-like 4 (ANGPTL4) and cyclic adenosine monophosphate response element-binding protein 1 (CREB1) were tested via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell viability and apoptosis was measured via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide or flow cytometry. The abundances of inflammatory cytokines were examined via qRT-PCR and enzyme-linked immunosorbent assay. The association between EZH2 and ANGPTL4 was explored via chromatin immunoprecipitation. The colon damage in DSS-treated mice was investigated by colon length, histological analysis, inflammatory response and apoptosis. KEY FINDINGS LPS induced viability inhibition, inflammatory response and apoptosis in Caco-2 cells. EZH2 expression was increased but ANGPTL4 and CREB1 levels were decreased in LPS-challenged Caco-2 cells. Overexpression of ANGPTL4 or CREB1 suppressed LPS-induced damage in Caco-2 cells. EZH2 could target ANGPTL4 to mediate CREB1 expression. Inhibition of EZH2 suppressed LPS-caused injury. Moreover, knockdown of ANNGPTL4 or CREB1 attenuated the role of EZH2 inhibition. DSS caused the reduced colon length and increased inflammatory response as well as apoptosis. EZH2 expression was up-regulated but ANGPTL4 and CREB1 expression were down-regulated in DSS-treated mice. SIGNIFICANCE Inhibition of EZH2 declined LPS-induced injury in Caco-2 cells by mediating ANGPTL4 and CREB1, indicating the potential of EZH2 in treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Xiao-Fei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Shuang-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Hong-Li Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Chang-Qing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Li Deng
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China.
| |
Collapse
|
7
|
Qiao C, Wan J, Zhang L, Luo B, Liu P, Di A, Gao H, Sun X, Zhao G. Astragaloside II alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo. Am J Transl Res 2019; 11:7074-7083. [PMID: 31814910 PMCID: PMC6895531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory intestinal disease, and its morbidity is rising worldwide. Previous study indicated that astragaloside II (AS II), a monomeric compound, was used to treat bowel disease. However, the effects of AS II on UC remains unclear. Thus, this study aimed to investigate the therapeutic effects of AS II on experimental UC in vitro and in vivo. METHODS CCD-18Co cells were stimulated by 1 μg/mL LPS to mimic UC in vitro. In addition, dextran sulfate sodium (DSS)-induced UC mouse model was established in vivo. CCK-8 assay was used to detect cell proliferation in vitro. Moreover, the concentrations of inflammatory factors interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO), superoxide dismutase (SOD) and malondialdehyde (MDA) in CCD-18Co cells and colon tissues were determined by ELISA, respectively. Meanwhile, the expressions of hypoxia-inducible factor 1α (HIF-α), phospho-inhibitor of NF-κB (p-IκB) and phospho-NF-κB p65 (p-p65) were detected by western blotting in vitro and in vivo, respectively. RESULTS In this study, the levels of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 were significantly increased in lipopolysaccharide (LPS)-stimulated CCD-18Co cells. However, LPS-induced inflammatory response was markedly alleviated by AS II. In addition, LPS-induced HIF-α, p-IκB and p-p65 proteins increases were markedly ameliorated by AS II treatment. Moreover, AS II reduced disease activity index (DAI) scores and increased the colon lengths in DSS-treated mice. Meanwhile, AS II decreased the levels of IL-6, TNF-α, IL-1β, NO, MPO and MDA, and increased the level of SOD in colon of DSS-treated mice. Furthermore, AS II downregulated the expressions of HIF-α, p-IκB and p-p65 in DSS-induced UC in mice. CONCLUSION Our findings indicated that AS II could alleviate inflammatory response in LPS-induced CCD-18Co cells and in DSS-induced UC in mice. In conclusion, AS II may serve as a potential agent for the treatment of UC.
Collapse
Affiliation(s)
- Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Jin’e Wan
- Department of High Pressure Oxygen, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Lize Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Bo Luo
- Department of Urology, Songshan Hospital of Qingdao UniversityQingdao 266000, Shandong, China
| | - Penglin Liu
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Aiting Di
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Hairui Gao
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Xiaomei Sun
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| |
Collapse
|
8
|
The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem 2016; 118:588-595. [PMID: 27378376 DOI: 10.1016/j.acthis.2016.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified.
Collapse
|
9
|
Malago JJ, Sangu CL. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats. J Zhejiang Univ Sci B 2015; 16:224-34. [PMID: 25743124 DOI: 10.1631/jzus.b1400191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate.
Collapse
Affiliation(s)
- Joshua J Malago
- Department of Pathology, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3203, Morogoro, Tanzania; c/o Walter Oseko, P.O. Box 62, Duluti, Arusha, Tanzania
| | | |
Collapse
|
10
|
KE XIAO, HU GUANGHONG, FANG WENYI, CHEN JINTUAN, ZHANG XIN, YANG CHUNBO, PENG JUN, CHEN YOUQIN, SFERRA THOMASJ. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells. Int J Mol Med 2015; 35:1133-7. [DOI: 10.3892/ijmm.2015.2083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/21/2015] [Indexed: 11/05/2022] Open
|
11
|
Yang M, Lin HB, Gong S, Chen PY, Geng LL, Zeng YM, Li DY. Effect of Astragalus polysaccharides on expression of TNF-α, IL-1β and NFATc4 in a rat model of experimental colitis. Cytokine 2014; 70:81-6. [DOI: 10.1016/j.cyto.2014.07.250] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023]
|
12
|
Zhang F, Lu M, Wang H, Ren T. Aspirin attenuates angiotensin II-induced inflammation in bone marrow mesenchymal stem cells via the inhibition of ERK1/2 and NF-κB activation. Biomed Rep 2013; 1:930-934. [PMID: 24649055 DOI: 10.3892/br.2013.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/19/2013] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (Ang II) is a peptide hormone that plays a critical role in numerous physiological and pathophysiological processes. It is also commonly used as an inducer for the directional differentiation of bone marrow mesenchymal stem cells (bmMSCs). Previous studies demonstrated that Ang II induces inflammatory responses in endothelial cells, smooth muscle cells and fibroblasts. Aspirin is generally used as analgesic, antipyretic and occasionally anti-inflammatory medication. Whether aspirin suppresses inflammatory responses in bmMSCs has not been elucidated. In this study, we investigated the effect of aspirin on Ang II-induced inflammation in bmMSCs. Our results demonstrated that Ang II (10 nM-10 μM) increased the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6 from bmMSCs in a dose-dependent manner. This result was further confirmed by a reverse transcription-polymerase chain reaction (RT-PCR) assay, which demonstrated a dose-dependent increase in the mRNA expression of TNF-α, IL-6, IL-1β and monocyte chemotactic protein-1 (MCP-1) in bmMSCs following exposure to Ang II. Furthermore, it was also observed that Ang II increased the expression of phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) and phospho-nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-p65 in bmMSCs. The application of aspirin (0.1 mM) significantly inhibited the activation of ERK1/2 and NF-κB, the expression of TNF-α, IL-6, IL-1β and MCP-1 genes and the secretion of TNF-α and IL-6. Our findings indicated that aspirin may attenuate Ang II-induced inflammation in bmMSCs via the inhibition of ERK1/2 and NF-κB activation.
Collapse
Affiliation(s)
- Fenxi Zhang
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ming Lu
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huaibin Wang
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tongming Ren
- Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|