1
|
Xiao X, Luo F, Fu M, Jiang Y, Liu S, Liu B. Evaluating the therapeutic role of selected active compounds in Plumula Nelumbinis on pulmonary hypertension via network pharmacology and experimental analysis. Front Pharmacol 2022; 13:977921. [PMID: 36059960 PMCID: PMC9428143 DOI: 10.3389/fphar.2022.977921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are critical factors leading to vascular remodeling in pulmonary hypertension (PH). This study aimed to explore the effect and potential mechanism of Plumula Nelumbinis on PH by using network pharmacology and experimental analysis. Network pharmacology and molecular docking results indicated that the potential active components of Plumula Nelumbinis against PH were mainly alkaloid compounds, including neferine, liensinine, and isoliensinine. Subsequently, by constructing a Su5416 plus hypoxia (SuHx)-induced PH rat model, we found that the total alkaloids of Plumula Nelumbinis (TAPN) can reduce the right ventricular systolic pressure, delay the process of pulmonary vascular and right ventricular remodeling, and improve the right heart function in PH rats. In addition, TAPN can effectively reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1, and p-SRC protein expression in lung tissue of PH rats. Finally, by constructing a hypoxia-induced PASMCs proliferation and migration model, we further found that TAPN, neferine, liensinine, and isoliensinine could inhibit the proliferation and migration of PASMCs induced by hypoxia; reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1 and p-SRC protein expression in PASMCs. Based on these observations, we conclude that the alkaloid compounds extracted from Plumula Nelumbinis (such as neferine, liensinine, and isoliensinine) can inhibit the abnormal proliferation and migration of PASMCs by regulating the expression of p-SRC and PIM1, thereby delaying the progression of PH.
Collapse
Affiliation(s)
- Xinghua Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Fangmei Luo
- Department of Pharmacy, Hunan Children’s Hospital, Changsha, China
| | - Minyi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bin Liu,
| |
Collapse
|
2
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Li C, Zhong X, Xia W, He J, Gan H, Zhao H, Xia Y. The CX3CL1/CX3CR1 axis is upregulated in chronic kidney disease and contributes to angiotensin II-induced migration of vascular smooth muscle cells. Microvasc Res 2020; 132:104037. [PMID: 32615135 DOI: 10.1016/j.mvr.2020.104037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND The role of the chemokine axis, CX3CL1/CX3CR1, in the development of cardiovascular diseases has been widely speculated. Angiotensin II (Ang II) is a pivotal factor promoting cardiovascular complications in patients with chronic kidney disease (CKD). Whether there is a link between the two in CKD remains unclear. METHODS The uremic mice were treated with losartan for 8 weeks, and the expression of aortic CX3CL1/CX3CR1 was detected. Cultured mouse aortic vascular smooth muscle cells (VSMCs) were stimulated with Ang II, and then CX3CR1 expression was assessed by western blot. After the targeted disruption of CX3CR1 by transfection with siRNA, the migration of VSMCs was detected by transwell assay. Finally, both the activation of Akt pathway and the expression of IL-6 were detected by western blot. RESULTS Losartan treatment reduced the upregulation of aortic CX3CL1/CX3CR1 expression in uremic mice. In vitro, Ang II significantly upregulated CX3CR1 expression in VSMCs. Targeted disruption of CX3CR1 attenuated Ang II-induced migration of VSMCs. In addition, the use of CX3CR1-siRNA suppressed Akt phosphorylation and IL-6 production in VSMCs stimulated by Ang II. CONCLUSIONS The aortic CX3CL1/CX3CR1 is upregulated by Ang II in CKD, and it contributes to Ang II-induced migration of VSMCs in vitro.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Cell Line
- Cell Movement/drug effects
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/metabolism
- Disease Models, Animal
- Interleukin-6/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Up-Regulation
- Uremia/metabolism
- Uremia/pathology
Collapse
Affiliation(s)
- Chengsheng Li
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyi Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenyu Xia
- Class 4, Grade 2, Guangzhou Zhixin High School, Guangzhou 511430, China
| | - Jin He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - HongFei Zhao
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yunfeng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Chen J, Tang M, Liu M, Jiang Y, Liu B, Liu S. Neferine and lianzixin extracts have protective effects on undifferentiated caffeine-damaged PC12 cells. BMC Complement Med Ther 2020; 20:76. [PMID: 32143612 PMCID: PMC7076826 DOI: 10.1186/s12906-020-2872-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The embryos of Nelumbo nucifera Gaertn seeds, lianzixin, are used in China as food and traditional herbal medicine. Principal therapeutic indications are insomnia, anxiety and pyrexia. Caffeine is a psychostimulant and excessive use predisposes to cell damage and neurotoxicity. We aimed to investigate the potential protect effect of Neferine and lianzixin extracts on undifferentiated caffeine-damaged phaeochromocytoma cells (PC12 cells). METHODS A cell damage model based on undifferentiated PC12 was established with caffeine. Effect of Lianzixin extracts (total alkaloids, alcohol extract and water extract) and neferine on caffeine-damaged PC12 cells was evaluated. Cell viability was assessed using the methyl thiazolyl tetrazolium (MTT) assay, cellular morphology by inverted microscope, the nucleus by Hoechst 33342 staining and cleaved poly ADP-ribose polymerase (PARP) expression by western blot analysis. RESULTS Lianzixin extracts (total alkaloids, alcohol extract and water extract) and neferine improved the viability of PC12 cells damaged by caffeine. The morphology of PC12 cells pretreated with neferine, or alcohol or water extract of lianzixin aggregated and attached better than caffeine-damaged cells, but cells pretreated with total alkaloids of lianzixin showed abnormal morphology. Compared with caffeine-damaged cells, cells pretreated with neferine, or alcohol or water extract of lianzixin showed a notable increase in nucleus staining and an obvious decrease in cleaved PARP expression. CONCLUSIONS Lianzixin extracts and neferine have protective effects against caffeine-induced damage in PC12 cells, which laid a foundation for finding a new medicine value of Lianzixin.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Manhua Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Yin S, Ran Q, Yang J, Zhao Y, Li C. Nootropic effect of neferine on aluminium chloride-induced Alzheimer's disease in experimental models. J Biochem Mol Toxicol 2019; 34:e22429. [PMID: 31860774 DOI: 10.1002/jbt.22429] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease, which is developed by oxidative stress and acetylcholine contraction in the synaptic cleft of the neurons. This leads to dementia, memory loss, and decrease in learning ability and orientation. In this research work, we aimed to explore the neuroprotective effect of neferine on AlCl3 -induced AD in rats. The results of our study revealed that the increased reactive oxygen species (ROS) and nitric oxide in the hippocampus leads to the development of AD in the rats. The oral treatment of neferine done the following occurrences such as; it potentially inhibited the ROS formation and acts as a scavenging molecule by preventing the neurodegeneration. It also improved the memory and learning ability to complete the maze activity in the AD rats and significantly increased the antioxidants superoxide dismutase, catalase, and reduced glutathione in neferine treated AD rats. It aggressively declined the activity of acetylcholine esterase and Na+ K+ ATPase in the neurodegenerative rat models. The gene expression pattern of neuroinflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were decreased in the neferine-treated rats. The neuroinflammatory proteins such as inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa β (Nf-κβ) were decreased and Nf-κβ inhibitor IKBα was increased in the neferine-treated AD rats. Finally, the histology study proved that the neferine treatment possibly prevents neurodegeneration in the hippocampus tissue of the AD models. Hence, these all findings concluded that the neferine could be a potential neuropreventive as well as neurodegenerative therapeutic compound in neurological and cognitive dysfunction.
Collapse
Affiliation(s)
- Shuaizeng Yin
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qin Ran
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jin Yang
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yuhua Zhao
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Chenyu Li
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
6
|
Li H, Chen W, Chen Y, Zhou Q, Xiao P, Tang R, Xue J. Neferine Attenuates Acute Kidney Injury by Inhibiting NF-κB Signaling and Upregulating Klotho Expression. Front Pharmacol 2019; 10:1197. [PMID: 31680971 PMCID: PMC6804424 DOI: 10.3389/fphar.2019.01197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: Morbidity associated with and mortality from acute kidney injury (AKI) is gradually increasing, and no efficient drug is available. We explored whether neferine, a bisbenzylisoquinoline alkaloid, attenuated AKI, and the possible mechanisms in play in vivo and in vitro. Methods: We induced AKI using ischemia-reperfusion (I/R) or lipopolysaccharide (LPS) in vivo. C57 BL/6 male mice were randomized into two groups each containing four subgroups: control, neferine, I/R or LPS, and I/R or LPS + neferine. Mice were sacrificed 24 h after AKI induction and kidneys and sera were collected. NRK-52E cells were exposed to hypoxia/reoxygenation (H/R) or LPS in vitro. Results: Neferine pretreatment significantly alleviated kidney functional loss and pathological damage. In the AKI mouse models induced by I/R or LPS, neferine inhibited the infiltration of inflammatory cells, including granulocytes and macrophages. Both in vivo and in vitro, neferine attenuated apoptosis, suppressed inflammatory cytokine production, decreased degradation of IκB-α, and inhibited nuclear translocation of NF-κB. Furthermore, it also upregulated Klotho expression in AKI. Conclusion: Neferine mitigated renal injury in AKI models, perhaps by suppressing the activation of NF-κB and upregulating the expression of Klotho.
Collapse
Affiliation(s)
- Huihui Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenhang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Xue
- Institute of Hospital Administration, Xiangya Hospital, Central South University, Changsha, China.,Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Nonn O, Güttler J, Forstner D, Maninger S, Zadora J, Balogh A, Frolova A, Glasner A, Herse F, Gauster M. Placental CX3CL1 is Deregulated by Angiotensin II and Contributes to a Pro-Inflammatory Trophoblast-Monocyte Interaction. Int J Mol Sci 2019; 20:ijms20030641. [PMID: 30717334 PMCID: PMC6387455 DOI: 10.3390/ijms20030641] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
CX3CL1, which is a chemokine involved in many aspects of human pregnancy, is a membrane-bound chemokine shed into circulation as a soluble isoform. Placental CX3CL1 is induced by inflammatory cytokines and is upregulated in severe early-onset preeclampsia. In this study, the hypothesis was addressed whether angiotensin II can deregulate placental CX3CL1 expression, and whether CX3CL1 can promote a pro-inflammatory status of monocytes. qPCR analysis of human placenta samples (n = 45) showed stable expression of CX3CL1 and the angiotensin II receptor AGTR1 throughout the first trimester, but did not show a correlation between both or any influence of maternal age, BMI, and gestational age. Angiotensin II incubation of placental explants transiently deregulated CX3CL1 expression, while the angiotensin II receptor antagonist candesartan reversed this effect. Overexpression of recombinant human CX3CL1 in SGHPL-4 trophoblasts increased adhesion of THP-1 monocytes and significantly increased IL8, CCL19, and CCL13 in co-cultures with human primary monocytes. Incubation of primary monocytes with CX3CL1 and subsequent global transcriptome analysis of CD16+ subsets revealed 81 upregulated genes, including clusterin, lipocalin-2, and the leptin receptor. Aldosterone synthase, osteopontin, and cortisone reductase were some of the 66 downregulated genes present. These data suggest that maternal angiotensin II levels influence placental CX3CL1 expression, which, in turn, can affect monocyte to trophoblast adhesion. Release of placental CX3CL1 could promote the pro-inflammatory status of the CD16+ subset of maternal monocytes.
Collapse
Affiliation(s)
- Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Jacqueline Güttler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Julianna Zadora
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| | - András Balogh
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Berlin Institute of Health (BIH), 13125 Berlin, Germany.
| | - Alina Frolova
- Institute of Molecular Biology and Genetic of National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | | | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
- Berlin Institute of Health (BIH), 13125 Berlin, Germany.
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
8
|
Li C, He J, Zhong X, Gan H, Xia Y. CX3CL1/CX3CR1 Axis Contributes to Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation and Inflammatory Cytokine Production. Inflammation 2018; 41:824-834. [PMID: 29356931 DOI: 10.1007/s10753-018-0736-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiotensin II (Ang II) dysregulation has been determined in many diseases. The CX3CL1/CX3CR1 axis, which has a key role in cardiovascular diseases, is involved in the proliferation and inflammatory cytokine production of vascular smooth muscle cells (VSMCs). In this study, we aim to explore whether Ang II has a role in the expression of CX3CL1/CX3CR1, thus contributing to the proliferation and pro-inflammatory status of VSMCs. Cultured mouse aortic VSMCs were stimulated with 100 nmol/L of Ang II, and the expression of CX3CR1 was assessed by western blot. The results demonstrated that Ang II significantly up-regulated CX3CR1 expression in VSMCs and induced the production of reactive oxygen species (ROS) and the phosphorylation of p38 MAPK. Inhibitors of NADPH oxidase, ROS, and AT1 receptor significantly reduced Ang II-induced CX3CR1 expression. Targeted disruption of CX3CR1 by transfection with siRNA significantly attenuated Ang II-induced VSMC proliferation as well as down-regulated the expression of proliferating cell nuclear antigen (PCNA). Furthermore, CX3CR1-siRNA suppressed the effect of Ang II on stimulating Akt phosphorylation. Besides, the use of CX3CR1-siRNA decreased inflammatory cytokine production induced by Ang II treatment. Our results indicate that Ang II up-regulates CX3CR1 expression in VSMCs via NADPH oxidase/ROS/p38 MAPK pathway and that CX3CL1/CX3CR1 axis contributes to the proliferative and pro-inflammatory effects of Ang II in VSMCs.
Collapse
Affiliation(s)
- Chengsheng Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jin He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaoyi Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yunfeng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci Rep 2018; 8:8394. [PMID: 29849106 PMCID: PMC5976673 DOI: 10.1038/s41598-018-26762-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Cranial irradiation is the main therapeutic strategy for treating primary and metastatic brain tumors. However, radiation is well-known to induce several unexpected side effects including emotional disorders. Although radiation-induced depression may cause decreased quality of life after radiotherapy, investigations of its molecular mechanism and therapeutic strategies are still insufficient. In this study, we found that behavioral symptoms of depression on mice models with the decrease of BrdU/NeuN- and Dcx-positive populations and MAP-2 expression in hippocampus were induced by cranial irradiation, and transthyretin (TTR) was highly expressed in hippocampus after irradiation. It was shown that overexpression of TTR resulted in the inhibition of retinol-mediated neuritogenesis. PAK1 phosphorylation and MAP-2 expression were significantly reduced by TTR overexpression following irradiation. Moreover, we observed that treatment of allantoin and neferine, the active components of Nelumbo nucifera, interrupted irradiation-induced TTR overexpression, consequently leading to the increase of PAK1 phosphorylation, neurite extension, BrdU/NeuN- and Dcx-positive populations, and MAP-2 expression. Behavioral symptoms of depression following cranial irradiation were also relieved by treatment of allantoin and neferine. These findings demonstrate that TTR plays a critical role in neurogenesis after irradiation, and allantoin and neferine could be potential drug candidates for recovering the effects of radiation on neurogenesis and depression.
Collapse
|
10
|
Marthandam Asokan S, Mariappan R, Muthusamy S, Velmurugan BK. Pharmacological benefits of neferine - A comprehensive review. Life Sci 2018; 199:60-70. [PMID: 29499283 DOI: 10.1016/j.lfs.2018.02.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
This article recapitulates the existing in vitro and in vivo studies focusing on the effects of neferine-an alkaloid derivative of lotus plant, in various disease models and its effects on key signaling molecules. The review also compiles a large number of research studies that demonstrate methods for isolation and extraction, biosynthetic pathway, pharmacological activity and mode of action of neferine and their underlying mechanisms at cellular level. Neferine is a unique bis-benzylisoquinoline alkaloid that possesses a number of therapeutic effects such as anti-cancer, anti-diabetic, anti-aging, anti-microbial, anti-thrombotic, anti-arrhythmic, anti-inflammatory and even anti-HIV. It also enhances the anti-cancer properties of other anti-cancer drugs like cisplatin, adriamycin, taxol, etc. It is also reported to reverse chemo-resistance and enhance sensitivity of the cancer cells towards anti-cancer drugs. The underlying mechanisms for its activities mainly include apoptosis, autophagy and G1 arrest. Neferine protects them against the effect of drugs like cisplatin. The therapeutic properties of neferine is widely diverse, while it shows toxicity to cancer it also shows cyto-protective effects against cardio-vascular diseases, pulmonary disease, and is also effective against Alzheimer's disease and elicits anti-oxidative effect in many cellular systems. This article thus is the first ever attempt to review the therapeutic activities of neferine established in in vitro and in vivo models and to compile all the fragmented data available on the omnipotent activities of neferine.
Collapse
Affiliation(s)
| | - Ravichandran Mariappan
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500 055, Telangana, India
| | | | | |
Collapse
|
11
|
Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia 2018; 124:58-65. [DOI: 10.1016/j.fitote.2017.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/09/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022]
|
12
|
Chen XX, Zhang JH, Pan BH, Ren HL, Feng XL, Wang JL, Xiao JH. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation. Life Sci 2017; 187:64-73. [PMID: 28802903 DOI: 10.1016/j.lfs.2017.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
AIMS Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca2+-permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. MATERIALS AND METHODS Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca2+]i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. KEY FINDINGS TRPC3 blocker Gd3+, antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca2+]i and KCl-induced changes in [Ca2+]i, eventually inhibiting ACh-induced ASMC proliferation. SIGNIFICANCE Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling.
Collapse
Affiliation(s)
- Xiao-Xu Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Hua Zhang
- Center for Stem Cell Research and Application, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin-Hua Pan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui-Li Ren
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiu-Ling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Ling Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Hua Xiao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
13
|
Meng XL, Zheng LC, Liu J, Gao CC, Qiu MC, Liu YY, Lu J, Wang D, Chen CL. Inhibitory effects of three bisbenzylisoquinoline alkaloids on lipopolysaccharide-induced microglial activation. RSC Adv 2017. [DOI: 10.1039/c7ra01882g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Three bisbenzylisoquinoline alkaloids (liensinine, neferine, and isoliensinine) inhibit lipopolysaccharide-induced microglial activation.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Liang-Chao Zheng
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Jia Liu
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Cheng-Cheng Gao
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Ma-Chao Qiu
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Ying-Ying Liu
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Jing Lu
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| | - Dan Wang
- Research Center for Natural Product Pharmacy of Liaoning Province
- Shenyang 110036
- China
| | - Chang-Lan Chen
- School of Pharmaceutical Science
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|
14
|
Sharma BR, Gautam LNS, Adhikari D, Karki R. A Comprehensive Review on Chemical Profiling ofNelumbo Nucifera: Potential for Drug Development. Phytother Res 2016; 31:3-26. [DOI: 10.1002/ptr.5732] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/28/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| | - Lekh Nath S. Gautam
- C. Eugene Bennett Department of Chemistry; West Virginia University; Morgantown WV 26506 USA
| | | | - Rajendra Karki
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| |
Collapse
|
15
|
Phytochemical Profile and Biological Activity of Nelumbo nucifera. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:789124. [PMID: 27057194 PMCID: PMC4710907 DOI: 10.1155/2015/789124] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
Abstract
Nelumbo nucifera Gaertn. (Nymphaeaceae) is a potential aquatic crop grown and consumed throughout Asia. All parts of N. nucifera have been used for various medicinal purposes in various systems of medicine including folk medicines, Ayurveda, Chinese traditional medicine, and oriental medicine. Many chemical constituents have been isolated till the date. However, the bioactive constituents of lotus are mainly alkaloids and flavonoids. Traditionally, the whole plant of lotus was used as astringent, emollient, and diuretic. It was used in the treatment of diarrhea, tissue inflammation, and homeostasis. The rhizome extract was used as antidiabetic and anti-inflammatory properties due to the presence of asteroidal triterpenoid. Leaves were used as an effective drug for hematemesis, epistaxis, hemoptysis, hematuria, and metrorrhagia. Flowers were used to treat diarrhea, cholera, fever, and hyperdipsia. In traditional medicine practice, seeds are used in the treatment of tissue inflammation, cancer and skin diseases, leprosy, and poison antidote. Embryo of lotus seeds is used in traditional Chinese medicine as Lian Zi Xin, which primarily helps to overcome nervous disorders, insomnia, and cardiovascular diseases (hypertension and arrhythmia). Nutritional value of lotus is as important as pharmaceutical value. These days' different parts of lotus have been consumed as functional foods. Thus, lotus can be regarded as a potential nutraceutical source.
Collapse
|