1
|
Inguscio CR, Carton F, Cisterna B, Rizzi M, Boccafoschi F, Tabaracci G, Malatesta M. Low ozone concentrations do not exert cytoprotective effects on tamoxifen-treated breast cancer cells in vitro. Eur J Histochem 2024; 68. [PMID: 39252536 PMCID: PMC11445695 DOI: 10.4081/ejh.2024.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
2
|
Hui Y, Xia K, Zhong J, Zhang Y, Qiu Q, Chen Z, Wang L, Liu X. SENP1 reduces oxidative stress and apoptosis in renal ischaemia-reperfusion injury by deSUMOylation of HIF-1α. J Cell Mol Med 2024; 28:e70043. [PMID: 39205481 PMCID: PMC11358391 DOI: 10.1111/jcmm.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear. In our study, we discovered that SENP1 was involved in RIRI and reduced renal cell apoptosis and oxidative stress at elevated levels. Further mechanistic studies showed that hypoxia-inducible factor-1α (HIF-1α) was identified as a substrate of SENP1. Furthermore, SENP1 deSUMOylated HIF-1α, which reduced the degradation of HIF-1α, and exerted a renoprotective function. In addition, the protective function was lost after application of the HIF-1α specific inhibitor KC7F2. Briefly, our results fully demonstrated that SENP1 reduced the degradation of HIF-1α and attenuated oxidative stress and apoptosis in RIRI by regulating the deSUMOylation of HIF-1α, suggesting that SENP1 may serve as a potential therapeutic target for the treatment of RIRI.
Collapse
Affiliation(s)
- Yumin Hui
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kang Xia
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiacheng Zhong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ye Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qiangmin Qiu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Inguscio CR, Cisterna B, Lacavalla MA, Donati F, Angelini O, Tabaracci G, Malatesta M. Ozone and procaine increase secretion of platelet-derived factors in platelet-rich plasma. Eur J Histochem 2023; 67:3879. [PMID: 37817677 PMCID: PMC10644046 DOI: 10.4081/ejh.2023.3879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 01/14/2024] Open
Abstract
Platelet-rich plasma (PRP) is gaining more and more attention in regenerative medicine as an innovative and efficient therapeutic approach. The regenerative properties of PRP rely on the numerous bioactive molecules released by the platelets: growth factors are involved in proliferation and differentiation of endothelial cells and fibroblasts, angiogenesis and extracellular matrix formation, while cytokines are mainly involved in immune cell recruitment and inflammation modulation. Attempts are ongoing to improve the therapeutic potential of PRP by combining it with agents able to promote regenerative processes. Two interesting candidates are ozone, administered at low doses as gaseous oxygen-ozone mixtures, and procaine. In the present study, we investigated the effects induced on platelets by the in vitro treatment of PRP with ozone or procaine, or both. We combined transmission electron microscopy to obtain information on platelet modifications and bioanalytical assays to quantify the secreted factors. The results demonstrate that, although platelets were already activated by the procedure to prepare PRP, both ozone and procaine induced differential morpho-functional modifications in platelets resulting in an increased release of factors. In detail, ozone induced an increase in surface protrusions and open canalicular system dilation suggestive of a marked α-granule release, while procaine caused a decrease in surface protrusions and open canalicular system dilation but a remarkable increase in microvesicle release suggestive of high secretory activity. Consistently, nine of the thirteen platelet-derived factors analysed in the PRP serum significantly increased after treatment with ozone and/or procaine. Therefore, ozone and procaine proved to have a remarkable stimulating potential without causing any damage to platelets, probably because they act through physiological, although different, secretory pathways.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | | | | | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| |
Collapse
|
4
|
Dayanir H, Dayanir D, Emmez G, Emmez H, Akyol SN, Iseri N, Uludag OM, Kavutcu M, Ozogul C, Babacan AC. Medical ozone treatment on prevention of epidural fibrosis in the rat model. Niger J Clin Pract 2023; 26:1197-1203. [PMID: 37635617 DOI: 10.4103/njcp.njcp_161_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background/Aim Epidural fibrosis is one of the problems that can be seen after spinal surgery. The aim of this study was to investigate the possible preventive role of medical ozone (O) treatment on epidural fibrosis. Materials and Methods Twenty-four Sprague Dawley rats were randomly split into four groups: control (C), O, laminectomy (L), and L+O groups. Animals in the C group were sacrificed at the beginning of the experiment. The L and L+O groups had L procedure, while O treatment was supplied for the O and O+L groups. After 42 days of follow-up, for histological evaluation and biochemical measurements, the ratio of epidural fibrosis and catalase (CAT) with malondialdehyde (MDA) levels in serum, respectively, were analyzed in terms of statistical differences. Results Histologically, a distinct difference was o bserved in the epidural space after O treatment. A significant difference in epidural fibrosis areas is found to be between the O, L, and O+L groups (P < 0,0001). There was no statistically significant difference between CAT and MDA levels that were obtained by spectrophotometric analysis. Conclusion Histological results suggest that medical O treatment after L can be used as an alternative method to prevent epidural fibrosis. Further studies with wide cohorts and interval measures are required to detail the effects of doses.
Collapse
Affiliation(s)
- H Dayanir
- Department of Medical Services and Techniques, Sağlık Bilimleri University, Gulhane Health Vocational School, Anaesthesia Program, Ankara, Turkey
| | - D Dayanir
- Department of Histology and Embryology, Gazi University School of Medicine, Ankara, Turkey
| | - G Emmez
- Department of Anesthesiology and Reanimation, Gazi University School of Medicine, Ankara, Turkey
| | - H Emmez
- Department of Neurosurgery, Gazi University School of Medicine, Ankara, Turkey
| | - S N Akyol
- Department of Histology and Embryology, Uskudar University School of Medicine, Istanbul, Turkey
| | - N Iseri
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - O M Uludag
- Department of Pharmacology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - M Kavutcu
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - C Ozogul
- Department of Histology and Embryology, Kyrenia, University of Kyrenia, Cyprus, Republic of Turkey
| | - A C Babacan
- Department of Anesthesiology and Reanimation, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Simsek EK, Sahinturk F, Gul E, Tepeoglu M, Araz C, Haberal B. Effect of Ozone Therapy on Epidural Fibrosis in Rats. World Neurosurg 2023; 175:e296-e302. [PMID: 36965663 DOI: 10.1016/j.wneu.2023.03.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
OBJECTIVE To demonstrate the effect of medical ozone therapy on the development of epidural fibrosis. METHODS A total of 25 Sprague-Dawley male rats were randomly divided into 3 groups: a control group (L3-L4 laminectomy only), a systemic ozone therapy (SOT) group (L3-L4 laminectomy only + intraperitoneal 15 mL [30 μg/mL] ozone), and a local ozone therapy (LOT) group (L3-L4 laminectomy only + subcutaneous 15 mL [30 μg/mL] ozone). Ozone therapy was administered 4 times on a 3-day interval during the wound-healing process, with the first dose immediately administered after surgery. The effects of ozone therapy on vascular endothelial growth factor, inflammation, and epidural fibrosis between groups were evaluated. RESULTS Staining with vascular endothelial growth factor was significantly less in the group that received SOT compared with the control group (P = 0.021). When the groups were compared in terms of inflammation, it was found that inflammation was less common in the SOT and LOT groups compared with the control group (SOT vs. control: P = 0.004 and LOT vs. control: P = 0.024), whereas inflammation was found to be significantly less in the SOT group compared with the LOT group (P = 0.008). In the histopathologic evaluation of epidural fibrosis, there was no significant difference between the SOT and LOT groups but less epidural fibrosis was observed in both groups compared to the control group (LOT vs. control: P = 0.037; SOT vs. control: P = 0.018). CONCLUSIONS Medical ozone therapy may be an alternative method that can be used effectively and safely in the prevention of epidural fibrosis after laminectomy.
Collapse
Affiliation(s)
- Ekin Kaya Simsek
- Department of Orthopaedic and Traumatology, Baskent University Hospital, Ankara, Turkey
| | - Fikret Sahinturk
- Department of Neurosurgery, Baskent University Hospital, Ankara, Turkey
| | - Eylem Gul
- Department of Biostatistics, Baskent University Hospital, Ankara, Turkey
| | - Merih Tepeoglu
- Department of Pathology, Baskent University Hospital, Ankara, Turkey
| | - Coskun Araz
- Department of Anesthesiology, Baskent University Hospital, Ankara, Turkey
| | - Bahtiyar Haberal
- Department of Orthopaedic and Traumatology, Baskent University Hospital, Ankara, Turkey.
| |
Collapse
|
6
|
AlMogbel AA, Albarrak MI, AlNumair SF. Ozone Therapy in the Management and Prevention of Caries. Cureus 2023; 15:e37510. [PMID: 37187640 PMCID: PMC10181895 DOI: 10.7759/cureus.37510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The article covered the function and results of ozone treatment in managing and preventing dental caries. Specifically, the author examined ozone and its benefits, including bactericidal, analgesic, anti-inflammatory, and immunomodulatory effects. Ozonated water, ozonated olive oil, and ozone gas are forms of ozone used in dentistry. The authors provided examples of studies regarding the positive impact of ozone therapy on patients with caries. Also, the research authors described several effects of ozonated water, namely, disinfectant, anti-inflammatory, activation of intracellular metabolism of the oral mucosa and dental wounds, advancement of local blood circulation, provocation of regenerative functions, and hemostatic effect in capillary bleeding. The ozone generator and equipment for creating an ozone-oxygen (O3/O2) gas mixture were mentioned as required in dentistry to produce ozone.
Collapse
Affiliation(s)
- AbdulMajeed A AlMogbel
- Orthodontics and Pediatric Dentistry Department, College of Dentistry, Qassim University, Buraydah, SAU
| | - Maram I Albarrak
- Family Dentistry Department, National Guard Hospital, Riyadh, SAU
| | - Shahad F AlNumair
- Dental Surgery Department, College of Dentistry, Qassim University, Buraydah, SAU
| |
Collapse
|
7
|
Delgadillo-Valero LF, Hernández-Cruz EY, Pedraza-Chaverri J. The Protective Role of Ozone Therapy in Kidney Disease: A Review. Life (Basel) 2023; 13:life13030752. [PMID: 36983907 PMCID: PMC10057350 DOI: 10.3390/life13030752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Ozone (O3) is a reactive oxygen species (ROS) that can interact with cellular components and cause oxidative stress. Following said logic, if O3 induces such a stressful milieu, how does it exert antioxidant functions? This is mediated by controlled toxicity produced by low concentrations of O3, which enhance the cell’s suppliance of antioxidant properties without causing any further damage. Therapeutic concentrations vary extensively, although 50 µg/mL is commonly used in experimental and clinical procedures, given that augmented concentrations might work as germicides or cause endogenous damage. O3 therapy has been shown to be effective when applied before or after traumatic renal procedures, whether caused by ischemia, xenobiotics, chronic damage, or other models. In this review, we focus on discussing the role of O3 therapy in different models of kidney damage associated with fibrosis, apoptosis, oxidative stress, and inflammation. We integrate and report knowledge about O3 in renal therapy, debunking skepticism towards unconventional medicine, explaining its proven therapeutic properties, and thus providing background for its use in further research as well as in clinical settings.
Collapse
Affiliation(s)
- Luis Fernando Delgadillo-Valero
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
8
|
Han J, Luo L, Wang Y, Wu S, Kasim V. Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases. Front Pharmacol 2022; 13:974775. [PMID: 36060000 PMCID: PMC9437267 DOI: 10.3389/fphar.2022.974775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Rhodiola is an ancient wild plant that grows in rock areas in high-altitude mountains with a widespread habitat in Asia, Europe, and America. From empirical belief to research studies, Rhodiola has undergone a long history of discovery, and has been used as traditional medicine in many countries and regions for treating high-altitude sickness, anoxia, resisting stress or fatigue, and for promoting longevity. Salidroside, a phenylpropanoid glycoside, is the main active component found in all species of Rhodiola. Salidroside could enhance cell survival and angiogenesis while suppressing oxidative stress and inflammation, and thereby has been considered a potential compound for treating ischemia and ischemic injury. In this article, we highlight the recent advances in salidroside in treating ischemic diseases, such as cerebral ischemia, ischemic heart disease, liver ischemia, ischemic acute kidney injury and lower limb ischemia. Furthermore, we also discuss the pharmacological functions and underlying molecular mechanisms. To our knowledge, this review is the first one that covers the protective effects of salidroside on different ischemia-related disease.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Yicheng Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| |
Collapse
|
9
|
Zhang BH, Liu H, Yuan Y, Weng XD, Du Y, Chen H, Chen ZY, Wang L, Liu XH. Knockdown of TRIM8 Protects HK-2 Cells Against Hypoxia/Reoxygenation-Induced Injury by Inhibiting Oxidative Stress-Mediated Apoptosis and Pyroptosis via PI3K/Akt Signal Pathway. Drug Des Devel Ther 2021; 15:4973-4983. [PMID: 34916780 PMCID: PMC8670861 DOI: 10.2147/dddt.s333372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Acute kidney injury (AKI) emerges as an acute and critical disease. Tripartite motif 8 (TRIM8), one number of the TRIM protein family, is proved to participate in ischemia/reperfusion (I/R) injury. However, whether TRIM8 is involved in renal I/R injury and the associated mechanisms are currently unclear. Purpose This study aimed to investigate the precise role of TRIM8 and relevant mechanisms in renal I/R injury. Materials and Methods In this study, human renal proximal tubular epithelial cells (HK-2 cells) underwent 12 hours of hypoxia and 2 h, 3 h or 4 h of reoxygenation to establish an in vitro hypoxia/reoxygenation (H/R) model. The siRNAs specific to TRIM8 (si-TRIM8) were transfected into HK-2 cells to knockdown TRIM8. The cell H/R model included various groups including Control, H/R, H/R+DMSO, H/R+NAC, si-NC+H/R, si-TRIM8+H/R and si-TRIM8+LY294002+H/R. The cell viability and levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), mRNA, apoptotic proteins, pyroptosis-related proteins and PI3K/AKT pathway-associated proteins were assessed. Results In vitro, realtime-quantitative PCR and western-blot analysis showed that the mRNA and protein expression of TRIM8 were obviously upregulated after H/R treatment in HK-2 cells. Compared with the H/R model group, knockdown of TRIM8 significantly increased cell viability and reduced the levels of ROS, H2O2, apoptotic proteins (Cleaved caspasebase-3 and BAX) and pyroptosis-related proteins (NLRP3, ASC, Caspase-1, Caspase-11, IL-1β and GSDMD-N). Western-blot analysis also authenticated that PI3K/AKT pathway was activated after TRIM8 inhibition. The application of 5 mM N-acetyl-cysteine, one highly efficient ROS inhibitor, significantly suppressed the expression of apoptotic proteins and pyroptosis-related proteins. Moreover, the combined treatment of TRIM8 knockdown and LY294002 reversed the effects of inhibiting oxidative stress. Conclusion Knockdown of TRIM8 can alleviate H/R-induced oxidative stress by triggering the PI3K/AKT pathway, thus attenuating pyropyosis and apoptosis in vitro.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
10
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
11
|
Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021; 22:ijms22158010. [PMID: 34360776 PMCID: PMC8347360 DOI: 10.3390/ijms22158010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.
Collapse
Affiliation(s)
- Karol Tejchman
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48914661144
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| |
Collapse
|
12
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
13
|
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 2020; 63:101138. [PMID: 32810649 PMCID: PMC7428719 DOI: 10.1016/j.arr.2020.101138] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, Italy; P.D. High School in Geriatrics, University of Pavia, Italy; St.Camillus Medical University, Rome, Italy
| |
Collapse
|
14
|
Martínez-Sánchez G, Schwartz A, Di Donna V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants (Basel) 2020; 9:antiox9050389. [PMID: 32384798 PMCID: PMC7278582 DOI: 10.3390/antiox9050389] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-κB/Nrf2 pathways and IL-6/IL-1β expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-κB/Nrf2 balance and IL-6 and IL-1β expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.
Collapse
|
15
|
Yang C, Chen Z, Yu H, Liu X. Inhibition of Disruptor of Telomeric Silencing 1-Like Alleviated Renal Ischemia and Reperfusion Injury-Induced Fibrosis by Blocking PI3K/AKT-Mediated Oxidative Stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4375-4387. [PMID: 31920287 PMCID: PMC6939406 DOI: 10.2147/dddt.s224909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
Background Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury, usually occurs during renal surgeries, and may eventually lead to chronic kidney diseases. However, effective therapeutic targets for renal I/R injury remain limited. Purpose In the present study, we investigated whether inhibition of disruptor of telomeric silencing 1-like (Dot1l) could alleviate renal I/R in vivo and in vitro, as well as the potential mechanisms involved in this process. Methods Sprague–Dawley rats were subjected to right renal ischemia for 45 mins and reperfusion for 0, 7, or 14 days with and without the Dot1l inhibitor EPZ004777. In addition, human renal proximal tubular epithelial cell line human kidney-2 cells were subjected to the hypoxia/reoxygenation (H/R) process (ie, 3 hrs hypoxia, 12 hrs and 24 hrs reoxygenation), with or without Dot1l inhibitor or genetic knockdown. Results Inhibition of Dot1l through EPZ004777 or genetic knockdown reduced the expression of alpha-smooth muscle actin, vimentin, and fibronectin in I/R- and H/R-induced injury. Moreover, H/R-induced fibrosis depended on oxidative stress in vitro. In addition, I/R- and H/R-induced generation of reactive oxygen species (ROS) was attenuated by EPZ004777 or small interfering RNA for Dot1l. Furthermore, the elevation of ROS induced by Dot1l was regulated via phosphatidylinositol 3-kinase (PI3K) and serine-threonine protein kinase (AKT) phosphorylation in vivo and in vitro. Conclusion Inhibition of Dot1l alleviated renal fibrosis by preventing the generation of ROS via the PI3K/AKT pathway. These results indicate that inhibitor of Dot1l could be a potential therapeutic target for renal I/R injury.
Collapse
Affiliation(s)
- Chuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Department of Urology, The People's Hospital of Hanchuan City, Hanchuan, People's Republic of China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hua Yu
- Department of Urology, The People's Hospital of Hanchuan City, Hanchuan, People's Republic of China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress. Redox Biol 2019; 24:101195. [PMID: 31004990 PMCID: PMC6475721 DOI: 10.1016/j.redox.2019.101195] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role in renal I/R injury in mice. Inhibiting Brd4 with either JQ1 or genetic knockdown resulted in reduction of endoplasmic reticulum stress (ERS)-associated protein and proapoptotic protein expression both in I/R-induced injury and hypoxia/reoxygenation (H/R) stimulation in HK-2 cells. H/R-induced apoptosis and ERS depended on oxidative stress in vitro. Moreover, FoxO4, which is involved in the generation of hydrogen peroxide, was up-regulated during H/R stimulation-mediated apoptosis and ERS, and this upregulation could be abolished by Brd4 inhibition. Consistently, FoxO4-mediated ROS generation was attenuated upon inhibition of Brd4 with JQ1 or siRNA against Brd4. Further, the transcriptional activity of FoxO4 was suppressed by PI3K and AKT phosphorylation, which are upstream signals of FoxO4 expression, and were enhanced by Brd4 both in vivo and in vitro. In conclusion, our results proved that Brd4 inhibition blocked renal apoptotic and ERS protein expression by preventing FoxO4-dependent ROS generation through the PI3K/AKT pathway, indicating that Brd4 could be a potential therapeutic target for renal I/R injury. Brd4 was up-regulated in renal I/R injury. Brd4 inhibitor JQ1 alleviated renal I/R injury. Brd4 inhibition blocked H/R-induced oxidative stress, apoptosis and ERS through FoxO4. Brd4 regulated FoxO4 through the PI3K/AKT pathway.
Collapse
|
17
|
Wang L, Chen Z, Weng X, Wang M, Du Y, Liu X. Combined Ischemic Postconditioning and Ozone Postconditioning Provides Synergistic Protection Against Renal Ischemia and Reperfusion Injury Through Inhibiting Pyroptosis. Urology 2018; 123:296.e1-296.e8. [PMID: 30359711 DOI: 10.1016/j.urology.2018.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether ischemic postconditioning (IPO) and ozone postconditioning (OP) could synergistically attenuate renal ischemia-reperfusion (I/R) injury and its possible mechanism. MATERIALS AND METHODS An in vivo rat model of renal I/R injury was established, and the serum and kidneys were harvested after reperfusion to assess renal function and histologic changes. For the in vitro study, the cultured NRK-52E cells were subjected to 3 hours of hypoxia (5% CO2, 1% O2, and 94% N2) followed by 24 hours of reoxygenation (5% CO2, 21% O2, and 74% N2). The mRNA expression levels were analyzed by real-time polymerase chain reaction, and the protein expression levels were analyzed by using Western blot, immunofluorescence staining and enzyme-linked immunosorbent assay. RESULTS Kidneys undergone I/R showed characteristic renal dysfunction and pyroptosis. IPO or OP could prevent the elevated blood urea nitrogen and creatinine, renal damage, as well as pyroptosis, however, the combined application of them had more obvious protection. Oxidative stress and pyroptosis were increased in hypoxia and reoxygenation (H/R) model using NRK-52E cells. The combination of hypoxic postconditioning and OP had more protective effects on oxidative abnormalities and pyroptosis compared with the single application of hypoxic postconditioning or OP. CONCLUSION Our in vivo and in vitro studies show the combination of IPO and OP synergistically prote-cted the kidney from I/R by attenuating pyroptosis in kidney cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| |
Collapse
|
18
|
Wang L, Chen Z, Liu Y, Du Y, Liu X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1293-1301. [PMID: 29861623 PMCID: PMC5968808 DOI: 10.2147/dddt.s164927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Ozone has been used as a curative agent for a variety of different diseases for over 150 years. In our previous study, we found that ozone oxidative preconditioning could alleviate renal damage induced by ischemia and reperfusion injury (I/R). Although this method had obvious protective effects in the reduction of I/R, its clinical application remains limited because this treatment must be commenced prior to the ischemic period, which is not practical in the clinic. Purpose In the present study, we investigated whether ozone oxidative postconditioning (OzoneOP) could attenuate renal I/R in vivo and in vitro, as well as the mechanisms underlying the effects of this treatment. Methods Sprague Dawley rats were subjected to right renal ischemia for 45 min and reperfusion for 24 h, or to sham operation with the left kidney removed, both with and without OzoneOP. In addition, normal rat kidney tubular epithelial cells (NRK-52E) were chosen to create a hypoxia–reoxygenation (H/R) model of 3 h hypoxia and 24 h reoxygenation processes, both with or without OzoneOP and mitogen-activated protein kinase (MAPK) inhibitors. Results Our results showed that OzoneOP significantly reversed apoptosis and the abnormal superoxide dismutase and malondialdehyde levels induced by I/R or H/R. OzoneOP also inhibited activation of the MAPK pathways both in vivo and in vitro, which resulted in significant protection against apoptosis and oxidative stress. Conclusion Our current data provide evidence that OzoneOP might serve as a potential therapy for renal I/R.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yang Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
19
|
Kızılay Z, Kahraman Çetin N, Aksel M, Abas Bİ, Aktaş S, Erken HA, Topçu A, Yılmaz A, Yenisey C. Ozone Partially Decreases Axonal and Myelin Damage in an Experimental Sciatic Nerve Injury Model. J INVEST SURG 2017; 32:8-17. [DOI: 10.1080/08941939.2017.1369606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahir Kızılay
- Adnan Menderes University, Faculty of Medicine, Department of Neurosurgery, Aydin, Turkey
| | - Nesibe Kahraman Çetin
- Adnan Menderes University, Faculty of Medicine, Department of Pathology, Aydin, Turkey
| | - Mehran Aksel
- Adnan Menderes University, Faculty of Medicine, Department of Physiology, Aydin, Turkey
| | - Burçin İrem Abas
- Adnan Menderes University, Faculty of Medicine, Department of Clinical Biochemistry, Aydin, Turkey
| | - Serdar Aktaş
- Adnan Menderes University, Faculty of Medicine, Department of Pharmacology and Toxicology, Aydin, Turkey
| | - Haydar Ali Erken
- Balikesir University, Faculty of Medicine, Department of Physiology, Balikesir, Turkey
| | - Abdullah Topçu
- Adnan Menderes University, Faculty of Medicine, Department of Neurosurgery, Aydin, Turkey
| | - Ali Yılmaz
- Adnan Menderes University, Faculty of Medicine, Department of Neurosurgery, Aydin, Turkey
| | - Cigdem Yenisey
- Adnan Menderes University, Faculty of Medicine, Department of Clinical Biochemistry, Aydin, Turkey
| |
Collapse
|
20
|
Wu X, Yan T, Wang Z, Wu X, Cao G, Zhang C, Tian X, Wang J. Micro-vesicles derived from human Wharton's Jelly mesenchymal stromal cells mitigate renal ischemia-reperfusion injury in rats after cardiac death renal transplantation. J Cell Biochem 2017; 119:1879-1888. [PMID: 28815768 DOI: 10.1002/jcb.26348] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
The purpose of the present study was to investigate the possible therapeutic effects of the human Wharton-Jelly mesenchymal stromal cells derived micro-vesicles (hWJMSCs-MVs) on renal ischemia-reperfusion injury (IRI) after cardiac death (CD) renal transplantation in rats. MVs were injected intravenously in rats immediately after renal transplantation. The animals were sacrificed at 24 h, 48 h, 1 and 2 weeks post-transplantation. ELISA was used to determine the von Willebrand Factor (vWF), tumor necrosis factor (TNF)-α, and interleukin (IL)-10 levels in the serum. Tubular cell proliferation and apoptosis were identified by Ki67 immunostaining and TUNEL assay. Renal fibrosis was assessed by Masson's tri-chrome straining and alpha-smooth muscle actin (α-SMA) staining. The infiltration of inflammatory cells was detected by CD68+ staining. The transforming growth factor (TGF)-β, hepatocyte growth factor (HGF), and α-SMA expression in the kidney was measured by Western blot. After renal transplantation, the rats treated with hWJMSCs-MVs improved survival rate and renal function. Moreover, MVs mitigated renal cell apoptosis, enhanced proliferation, and alleviated inflammation at the first 48 h. In the late period, abrogation of renal fibrosis was observed in the MVs group. MVs also could decrease the number of CD68+ macrophages in the kidney. Furthermore, MVs decreased the protein expression levels of α-SMA and TGF-β1 and increased the protein expression level of HGF at any point (24 h, 48 h, 1 or 2 weeks). The administration of MVs immediately after renal transplantation could ameliorate IRI in both the acute and chronic stage.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Sancak EB, Turkön H, Çukur S, Erimsah S, Akbas A, Gulpinar MT, Toman H, Sahin H, Uzun M. Major Ozonated Autohemotherapy Preconditioning Ameliorates Kidney Ischemia-Reperfusion Injury. Inflammation 2016; 39:209-217. [PMID: 26282390 DOI: 10.1007/s10753-015-0240-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medical ozone has therapeutic properties as an antimicrobial, anti-inflammatory, modulator of antioxidant defense system. Major ozonated autohemotherapy (MOA) is a new therapeutic approach that is widely used in the treatment of many diseases. The objective of the present study was to determine whether preischemic application of MOA would attenuate renal ischemia-reperfusion injury (IRI) in rabbits. Twenty-four male New Zealand white rabbits were divided into four groups, each including six animals: (1) Sham-operated group, (2) Ozone group (the MOA group without IRI), (3) IR group (60 min ischemia followed by 24 h reperfusion), and (4) IR + MOA group (MOA group). The effects of MOA were examined by use of hematologic and biochemical parameters consisting of neutrophil to lymphocyte ratio (NLR), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), ischemia-modified albumin (IMA), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI). In addition, the histopathological changes including the tubular brush border loss (TBBL), tubular cast (TC), tubular necrosis (TN), intertubular hemorrhage and congestion (IHC), dilatation of bowman space (DBS), and interstitial inflammatory cells infiltration (IECI) were evaluated. In the IR group, compared to the Sham group, biochemical parameters indicating oxidative stress, NLR, IL-6, TNF-α, IMA, TOS, and OSI have increased. MOA reduced inflammation and oxidative stress parameters. Although TAS values have decreased in the IR group and increased in the MOA-pretreated group, no significant changes in TAS values were detected between the IR and MOA groups. The total score was obtained by summing all the scores from morphological kidney damage markers. The total score has increased with IR damage when compared with the Sham group (13.83 ± 4.30 vs 1.51 ± 1.71; p = 0.002). But, the total score has decreased significantly after application of MOA (5.01 ± 1.49; p = 0.002; compared with the IR group). MOA preconditioning is effective in reducing tissue damage induced in kidney ischemia-reperfusion injury. The protective effect of MOA is mediated via reducing inflammatory response and regulating of reactive oxygen species (ROS). Renal histology also showed convincing evidence regarding MOA's protective nature against kidney injury induced renal ischemia-reperfusion. Consequently, MOA might be helpful in protecting the kidneys from IR-induced damage in humans, probably through the anti-inflammatory effect and reducing the total oxidant status.
Collapse
Affiliation(s)
- Eyup Burak Sancak
- Department of Urology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey. .,Canakkale Onsekiz Mart Universitesi, Terzioglu Yerleskesi, Barbaros Mh, 17100, Canakkale, Turkey.
| | - Hakan Turkön
- Department of Biochemistry, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Selma Çukur
- Department of Pathology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Sevilay Erimsah
- Department of Histology and Embryology, Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Alpaslan Akbas
- Department of Urology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Murat Tolga Gulpinar
- Department of Urology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Huseyin Toman
- Department of Anesthesiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Hasan Sahin
- Department of Anesthesiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| | - Metehan Uzun
- Department of Physiology, Canakkale Onsekiz Mart University, Faculty of Medicine, Canakkale, Turkey
| |
Collapse
|
22
|
Soranno DE, Rodell CB, Altmann C, Duplantis J, Andres-Hernando A, Burdick JA, Faubel S. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice. Am J Physiol Renal Physiol 2016; 311:F362-72. [PMID: 26962109 DOI: 10.1152/ajprenal.00579.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation.
Collapse
Affiliation(s)
- Danielle E Soranno
- Departments of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado;
| | - Christopher B Rodell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Jane Duplantis
- Departments of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Sarah Faubel
- Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
23
|
Sancak EB, Akbas A, Silan C, Cakir DU, Turkon H, Ozkanli SS. Protective effect of syringic acid on kidney ischemia-reperfusion injury. Ren Fail 2016; 38:629-35. [DOI: 10.3109/0886022x.2016.1149868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
24
|
Cai XR, Yu J, Zhou QC, Du B, Feng YZ, Liu XL. Use of intravoxel incoherent motion MRI to assess renal fibrosis in a rat model of unilateral ureteral obstruction. J Magn Reson Imaging 2016; 44:698-706. [PMID: 26841951 DOI: 10.1002/jmri.25172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/19/2016] [Indexed: 02/01/2023] Open
Affiliation(s)
- Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Juan Yu
- Department of Medical Imaging, Shenzhen Second People's Hospital; Shenzhen University; Shenzhen Guangdong China
| | - Qing-Chun Zhou
- Department of Urology, Nanhua Affiliated Hospital; Nanhua University; Hengyang Hunan China
| | - Bin Du
- Department of Pathology, First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Xiao-ling Liu
- Medical Imaging Center, First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| |
Collapse
|