1
|
Jahanbani F, Sing JC, Maynard RD, Jahanbani S, Dafoe J, Dafoe W, Jones N, Wallace KJ, Rastan A, Maecker HT, Röst HL, Snyder MP, Davis RW. Longitudinal cytokine and multi-modal health data of an extremely severe ME/CFS patient with HSD reveals insights into immunopathology, and disease severity. Front Immunol 2024; 15:1369295. [PMID: 38650940 PMCID: PMC11033372 DOI: 10.3389/fimmu.2024.1369295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Rajan Douglas Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Janet Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Whitney Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nathan Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Kelvin J. Wallace
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Azuravesta Rastan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Holden T. Maecker
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Pulmonary and Critical Care Medicine, Institute of Immunity, Transplantation, and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Hannes L. Röst
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
2
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Salehi MS, Safari A, Pandamooz S, Jurek B, Hooshmandi E, Owjfard M, Bayat M, Zafarmand SS, Miyan JA, Borhani-Haghighi A. The Beneficial Potential of Genetically Modified Stem Cells in the Treatment of Stroke: a Review. Stem Cell Rev Rep 2022; 18:412-440. [PMID: 34033001 PMCID: PMC8144279 DOI: 10.1007/s12015-021-10175-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | | |
Collapse
|
4
|
Lee HK, Lim HM, Park SH, Nam MJ. Knockout of Hepatocyte Growth Factor by CRISPR/Cas9 System Induces Apoptosis in Hepatocellular Carcinoma Cells. J Pers Med 2021; 11:jpm11100983. [PMID: 34683124 PMCID: PMC8540514 DOI: 10.3390/jpm11100983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: CRISPR/Cas9 system is a prokaryotic adaptive immune response system that uses noncoding RNAs to guide the Cas9 nuclease to induce site-specific DNA cleavage. Hepatocyte growth factor (HGF) is a well-known growth factor that plays a crucial role in cell growth and organ development. According to recent studies, it has been reported that HGF promoted growth of hepatocellular carcinoma (HCC) cells. Here, we investigated the apoptotic effects in HCC cells. Methods: Crispr-HGF plasmid was constructed using GeneArt CRISPR Nuclease Vector. pMex-HGF plasmid that targets HGF overexpressing gene were designed with pMex-neo plasmid. We performed real time-polymerase chain reaction to measure the expression of HGF mRNA. We performed cell counting assay and colony formation assay to evaluate cell proliferation. We also carried out migration assay and invasion assay to reveal the inhibitory effects of Crispr-HGF in HCC cells. Furthermore, we performed cell cycle analysis to detect transfection of Crispr-HGF induced cell cycle arrest. Collectively, we performed annexin V/PI staining assay and Western blot assay. Results: In Crispr-HGF-transfected group, the mRNA expression levels of HGF were markedly downregulated compared to pMex-HGF-transfected group. Moreover, Crispr-HGF inhibited cell viability in HCC cells. We detected that wound area and invaded cells were suppressed in Crispr-HGF-transfected cells. The results showed that transfection of Crispr-HGF induced cell cycle arrest and apoptosis in HCC cells. Expression of the phosphorylation of mitogen activated protein kinases and c-Met protein was regulated in Crispr-HGF-transfected group. Interestingly, we found that the expression of HGF protein in conditioned media significantly decreased in Crispr-HGF-transfected group. Conclusions: Taken together, we found that inhibition of HGF through transfection of Crispr-HGF suppressed cell proliferation and induced apoptotic effects in HCC Huh7 and Hep3B cells.
Collapse
Affiliation(s)
- Han Ki Lee
- Department of Biological Science, Gachon University, Seongnam 13120, Korea; (H.K.L.); (H.M.L.)
| | - Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam 13120, Korea; (H.K.L.); (H.M.L.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea
- Correspondence: (S.-H.P.); (M.J.N.); Tel.: +82-44-860-2126 (S.-H.P.); +82-31-750-4760 (M.J.N.)
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam 13120, Korea; (H.K.L.); (H.M.L.)
- Correspondence: (S.-H.P.); (M.J.N.); Tel.: +82-44-860-2126 (S.-H.P.); +82-31-750-4760 (M.J.N.)
| |
Collapse
|
5
|
Üçal M, Maurer C, Etschmaier V, Hamberger D, Grünbacher G, Tögl L, Roosen MJ, Molcanyi M, Vorholt D, Hatay FF, Hescheler J, Pallasch C, Schäfer U, Patz S. Inflammatory Pre-Conditioning of Adipose-Derived Stem Cells with Cerebrospinal Fluid from Traumatic Brain Injury Patients Alters the Immunomodulatory Potential of ADSC Secretomes. J Neurotrauma 2021; 38:2311-2322. [PMID: 33514282 DOI: 10.1089/neu.2020.7017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immunomodulation by adipose-tissue-derived stem cells (ADSCs) is of special interest for the alleviation of damaging inflammatory responses in central nervous system injuries. The present study explored the effects of cerebrospinal fluid (CSF) from traumatic brain injury (TBI) patients on this immunomodulatory potential of ADSCs. CSF conditioning of ADSCs increased messenger RNA levels of both pro- and anti-inflammatory genes compared to controls. Exposure of phorbol-12-myristate-13-acetate-differentiated THP1 macrophages to the secretome of CSF-conditioned ADSCs downregulated both proinflammatory (cyclooxygenase-2, tumor necrosis factor alpha) and anti-inflammatory (suppressor of cytokine signaling 3, interleukin-1 receptor antagonist, and transforming growth factor beta) genes in these cells. Interleukin-10 expression was elevated in both naïve and conditioned secretomes. ADSC secretome treatment, further, induced macrophage maturation of THP1 cells and increased the percentage of CD11b+, CD14+, CD86+, and, to a lesser extent, CD206+ cells. This, moreover, enhanced the phagocytic activity of CD14+ and CD86+ cells, though independently of pre-conditioning. Secretome exposure, finally, also induced a reduction in the percentage of CD192+ adherent cells in cultures of peripheral blood mononuclear cells (PBMCs) from both healthy subjects and TBI patients. This limited efficacy (of both naïve and pre-conditioned secretomes) suggests that the effects of lymphocyte-monocyte paracrine signaling on the fate of cultured PBMCs are strongest upon adherent cell populations.
Collapse
Affiliation(s)
- Muammer Üçal
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Christa Maurer
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,Ruprecht-Karls-University Heidelberg, Institute for Anatomy and Cell Biology, Division for Medical Cell Biology, Heidelberg, Germany
| | | | - Daniel Hamberger
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,National Centre for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Gerda Grünbacher
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Lennart Tögl
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Marvin J Roosen
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Marek Molcanyi
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniela Vorholt
- Department of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf, CECAD Centre of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - F Fulya Hatay
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Department of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf, CECAD Centre of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ute Schäfer
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Silke Patz
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
6
|
Zeng W, Wang Y, Xi Y, Wei G, Ju R. Bone marrow mesenchymal stem cells overexpressing hepatocyte growth factor ameliorate hypoxic-ischemic brain damage in neonatal rats. Transl Neurosci 2021; 12:561-572. [PMID: 35003786 PMCID: PMC8684041 DOI: 10.1515/tnsci-2020-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives Hypoxic–ischemic brain damage (HIBD) is a major cause of brain injury in neonates. Bone marrow mesenchymal stem cells (BMSCs) show therapeutic potential for HIBD, and genetic modification may enhance their neuroprotective effects. The goal of this study was to investigate the neuroprotective effects of hepatocyte growth factor (HGF)-overexpressing BMSCs (BMSCs-HGF) against HIBD and their underlying mechanisms. Methods: BMSCs were transfected with HGF using adenoviral vectors. HIBD models were established and then BMSCs were transplanted into the brains of HIBD rats via intraventricular injection. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to measure cerebral infarction volumes. In vitro, primary cultured cortical neurons were co-cultured with BMSCs in a Transwell plate system. Oxygen–glucose deprivation (OGD) was applied to imitate hypoxic–ischemic insult, and PD98059 was added to the culture medium to block the phosphorylation of extracellular signal-regulated kinase (ERK). Cell apoptosis was determined using TUNEL staining. The expression of HGF was measured by immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blots. The expression of phosphorylated ERK (p-ERK) and B-cell lymphoma-2 (Bcl-2) was measured by western blots. Results HGF-gene transfection promoted BMSC proliferation. Moreover, BMSCs-HGF decreased HIBD-induced cerebral infarction volumes and enhanced the protective effects of the BMSCs against HIBD. BMSCs-HGF also increased expression of HGF, p-ERK, and Bcl-2 in brain tissues. In vitro, BMSC-HGF protected neurons against OGD-induced apoptosis. Inhibition of ERK phosphorylation abolished the neuroprotective effect of BMSCs-HGF against OGD. Conclusions BMSCs-HGF is a potential treatment for HIBD and that the ERK/Bcl-2 pathway is involved in the underlying neuroprotective mechanism.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Yu Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Guoqing Wei
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| |
Collapse
|
7
|
Stancioiu F, Papadakis GZ, Lazopoulos G, Spandidos DA, Tsatsakis A, Floroiu M, Badiu C. CD271 + stem cell treatment of patients with chronic stroke: : A retrospective case series report. Exp Ther Med 2020; 20:2055-2062. [PMID: 32782517 PMCID: PMC7401309 DOI: 10.3892/etm.2020.8948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic stroke have currently little hope for motor improvement towards regaining independent activities of daily living; stem cell treatments offer a new treatment option and needs to be developed. Patients with chronic stroke (more than 3 months prior to stem cell treatment, mean 21.2 months post-stroke) were treated with CD271+ stem cells, 7 patients received autologous and 1 allogeneic cells from first degree relative; administration was intravenous in 1 and intrathecal in 7 patients. Each patient received a single treatment consisting of 2-5x106 cells/kg and they were followed up for up to 12 months. There were significant improvements in expressive aphasia (2/3 patients) spasticity (5/5, of which 2 were transient), and small improvements in motor function (2/8 patients). Although motor improvements were minor in our chronic stroke patients, improvements in aphasia and spasticity were significant and in the context of good safety we are advocating further administration and clinical studies of CD271+ stem cells not only in chronic stroke patients, but also for spastic paresis/plegia; a different, yet unexplored application is pulmonary emphysema.
Collapse
Affiliation(s)
| | - Georgios Z. Papadakis
- Department of Radiology, Medical School, University of Crete, 71003 Heraklion, Greece
- Foundation for Research and Technology Hellas (FORTH), Computational Biomedicine Laboratory (CBML), 70013 Heraklion, Greece
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Marius Floroiu
- Cardiovascular Surgery Department, Angiomedica Hospital, 020657 Bucharest, Romania
| | - Corin Badiu
- CI Parhon Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
8
|
Abe Y, Ochiai D, Masuda H, Sato Y, Otani T, Fukutake M, Ikenoue S, Miyakoshi K, Okano H, Tanaka M. In Utero Amniotic Fluid Stem Cell Therapy Protects Against Myelomeningocele via Spinal Cord Coverage and Hepatocyte Growth Factor Secretion. Stem Cells Transl Med 2019; 8:1170-1179. [PMID: 31407874 PMCID: PMC6811697 DOI: 10.1002/sctm.19-0002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the poor prognosis associated with myelomeningocele (MMC), the options for prenatal treatments are still limited. Recently, fetal cellular therapy has become a new option for treating birth defects, although the therapeutic effects and mechanisms associated with such treatments remain unclear. The use of human amniotic fluid stem cells (hAFSCs) is ideal with respect to immunoreactivity and cell propagation. The prenatal diagnosis of MMC during early stages of pregnancy could allow for the ex vivo proliferation and modulation of autologous hAFSCs for use in utero stem cell therapy. Therefore, we investigated the therapeutic effects and mechanisms of hAFSCs‐based treatment for fetal MMC. hAFSCs were isolated as CD117‐positive cells from the amniotic fluid of 15‐ to 17‐week pregnant women who underwent amniocentesis for prenatal diagnosis and consented to this study. Rat dams were exposed to retinoic acid to induce fetal MMC and were subsequently injected with hAFSCs in each amniotic cavity. We measured the exposed area of the spinal cord and hepatocyte growth factor (HGF) levels at the lesion. The exposed spinal area of the hAFSC‐treated group was significantly smaller than that of the control group. Immunohistochemical analysis demonstrated a reduction in neuronal damage such as neurodegeneration and astrogliosis in the hAFSC‐treated group. Additionally, in lesions of the hAFSC‐treated group, HGF expression was upregulated and HGF‐positive hAFSCs were identified, suggesting that these cells migrated to the lesion and secreted HGF to suppress neuronal damage and induce neurogenesis. Therefore, in utero hAFSC therapy could become a novel strategy for fetal MMC. stem cells translational medicine2019;8:1170–1179
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshimitsu Otani
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Marie Fukutake
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Ikenoue
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kei Miyakoshi
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Boldyreva MA, Shevchenko EK, Molokotina YD, Makarevich PI, Beloglazova IB, Zubkova ES, Dergilev KV, Tsokolaeva ZI, Penkov D, Hsu MN, Hu YC, Parfyonova YV. Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. Int J Mol Sci 2019; 20:E3088. [PMID: 31238604 PMCID: PMC6627773 DOI: 10.3390/ijms20123088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model. Angiogenic and neuroprotective effects were assessed following ADSC transplantation in suspension or in the form of cell sheet. We found superior blood flow restoration, tissue vascularization and innervation, and fibrosis reduction after transplantation of HGF-producing ADSC sheet compared to other groups. We suggest that the observed effects are determined by pleiotropic effects of HGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct. Thus, we demonstrated the high therapeutic potential of the utilized approach for skeletal muscle recovery after ischemic damage associated with complex tissue degenerative effects.
Collapse
MESH Headings
- Adipose Tissue/cytology
- Animals
- Cell Culture Techniques
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Culture Media, Conditioned/pharmacology
- Disease Models, Animal
- Gene Expression
- Hepatocyte Growth Factor/biosynthesis
- Hepatocyte Growth Factor/genetics
- Humans
- Ischemia
- Mice
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Neuroglia/cytology
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuronal Outgrowth/drug effects
- Stromal Cells/metabolism
- Stromal Cells/transplantation
Collapse
Affiliation(s)
- Maria A Boldyreva
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Evgeny K Shevchenko
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Yuliya D Molokotina
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
| | - Pavel I Makarevich
- Institute for Regenerative Medicine, Lomonosov Moscow State University, 119191 Moscow, Russia.
| | - Irina B Beloglazova
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Ekaterina S Zubkova
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Konstantin V Dergilev
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
| | - Zoya I Tsokolaeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Dmitry Penkov
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yelena V Parfyonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, 121552 Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
10
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
11
|
Giampà C, Alvino A, Magatti M, Silini AR, Cardinale A, Paldino E, Fusco FR, Parolini O. Conditioned medium from amniotic cells protects striatal degeneration and ameliorates motor deficits in the R6/2 mouse model of Huntington's disease. J Cell Mol Med 2018; 23:1581-1592. [PMID: 30585395 PMCID: PMC6349233 DOI: 10.1111/jcmm.14113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation significantly impacts the progression of Huntington's disease (HD) and the mutant HTT protein determines a pro‐inflammatory activation of microglia. Mesenchymal stem/stromal cells (MSC) from the amniotic membrane (hAMSC), and their conditioned medium (CM‐hAMSC), have been shown to possess protective effects in vitro and in vivo in animal models of immune‐based disorders and of traumatic brain injury, which have been shown to be mediated by their immunomodulatory properties. In this study, in the R6/2 mouse model for HD we demonstrate that mice treated with CM‐hAMSC display less severe signs of neurological dysfunction than saline‐treated ones. CM‐hAMSC treatment significantly delayed the development of the hind paw clasping response during tail suspension, reduced deficits in rotarod performance, and decreased locomotor activity in an open field test. The effects of CM‐hAMSC on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal atrophy and the formation of striatal neuronal intranuclear inclusions. In addition, while no significant increase was found in the expression of BDNF levels after CM‐hAMSC treatment, a significant decrease of microglia activation and inducible nitric oxide synthase levels were observed. These results support the concept that CM‐hAMSC could act by modulating inflammatory cells, and more specifically microglia.
Collapse
Affiliation(s)
- Carmela Giampà
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Alvino
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy
| | | | | | - Emanuela Paldino
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
12
|
Mukai T, Tojo A, Nagamura-Inoue T. Mesenchymal stromal cells as a potential therapeutic for neurological disorders. Regen Ther 2018; 9:32-37. [PMID: 30525073 PMCID: PMC6222283 DOI: 10.1016/j.reth.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that mesenchymal stromal/stem cells (MSCs) restore neurological damage through their secretion of paracrine factors or their differentiation to neuronal cells. Based on these studies, many clinical trials have been conducted using MSCs for neurological disorders, and their safety and efficacy have been reported. In this review, we provide a brief introduction to MSCs, especially umbilical cord derived-MSCs (UC-MSCs), in terms of characteristics, isolation, and cryopreservation, and discuss the recent progress in regenerative therapies using MSCs for various neurological disorders.
Collapse
Affiliation(s)
- Takeo Mukai
- Division of Molecular of Therapy, Center for Advanced Medical Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Arinobu Tojo
- Division of Molecular of Therapy, Center for Advanced Medical Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
13
|
Mukai T, Tojo A, Nagamura-Inoue T. Umbilical Cord-Derived Mesenchymal Stromal Cells Contribute to Neuroprotection in Neonatal Cortical Neurons Damaged by Oxygen-Glucose Deprivation. Front Neurol 2018; 9:466. [PMID: 29963009 PMCID: PMC6013549 DOI: 10.3389/fneur.2018.00466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Several studies have reported that human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) restore neurological damage in vivo through their secretion of paracrine factors. We previously found that UC-MSCs attenuate brain injury by secreting neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and hepatocyte growth factor (HGF). However, how these factors contribute to neuroprotection remains unknown. In this study, we aimed to investigate to what extent UC-MSC-derived HGF and BDNF contribute to neuroprotection using a Transwell co-culture system of neonatal cortical neurons damaged by oxygen-glucose deprivation. The influence of HGF and BDNF were determined by investigating neurons in both the presence and absence of UC-MSCs as these cells consistently secrete both factors and can be blocked by neutralizing antibodies. In the co-culture, UC-MSCs significantly improved neuronal injury, as indicated by an increase in immature neuron number, neurite outgrowth, and cell proliferation. Co-culture of damaged neurons with UC-MSCs also exhibited a reduction in the number of neurons displaying signs of apoptosis/necrosis. The neuroprotective actions of UC-MSCs were partially reverted by neutralizing antibodies. Together, our findings reveal that UC-MSC-secreted HGF and BDNF have neuroprotective effects on damaged neurons. Further studies should address the existence of other potential neurotrophic paracrine factors.
Collapse
Affiliation(s)
- Takeo Mukai
- Division of Molecular of Therapy, Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular of Therapy, Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP. Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin 2018; 39:695-712. [PMID: 29671416 DOI: 10.1038/aps.2018.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stroke can lead to long-term neurological deficits. Adult neurogenesis, the continuous generation of newborn neurons in distinct regions of the brain throughout life, has been considered as one of the appoaches to restore the neurological function following ischemic stroke. However, ischemia-induced spontaneous neurogenesis is not suffcient, thus cell-based therapy, including infusing exogenous stem cells or stimulating endogenous stem cells to help repair of injured brain, has been studied in numerous animal experiments and some pilot clinical trials. While the effects of cell-based therapy on neurological function during recovery remains unproven in randomized controlled trials, pharmacological agents have been administrated to assist the cell-based therapy. In this review, we summarized the limitations of ischemia-induced neurogenesis and stem-cell transplantation, as well as the potential proneuroregenerative effects of drugs that may enhance efficacy of cell-based therapies. Specifically, we discussed drugs that enhance proliferation, migration, differentiation, survival and function connectivity of newborn neurons, which may restore neurobehavioral function and improve outcomes in stroke patients.
Collapse
|
15
|
Wang LS, Wang H, Zhang QL, Yang ZJ, Kong FX, Wu CT. Hepatocyte Growth Factor Gene Therapy for Ischemic Diseases. Hum Gene Ther 2018; 29:413-423. [DOI: 10.1089/hum.2017.217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- School of Nursing, Jilin University, Jilin, P.R. China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Qing-Lin Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zhi-Jian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Fan-Xuan Kong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
16
|
Williams JK, Andersson KE. Regenerative pharmacology: recent developments and future perspectives. Regen Med 2016; 11:859-870. [DOI: 10.2217/rme-2016-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the current status of research that utilizes the application of pharmacological sciences to accelerate, optimize and characterize the development, maturation and function of bioengineered and regenerating tissues. These regenerative pharmacologic approaches have been applied to diseases of the urogenital tract, the heart, the brain, the musculoskeletal system and diabetes. Approaches have included the use of growth factors (such as VEGF and chemokines (stromal-derived factor – CXCL12) to mobilize cell to the sights of tissue loss or damage. The promise of this approach is to bypass the lengthy and expensive processes of cell isolation and implant fabrication to stimulate the body to heal itself with its own tissue regenerative pathways.
Collapse
Affiliation(s)
- James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Yu JH, Seo JH, Lee JY, Lee MY, Cho SR. Induction of Neurorestoration From Endogenous Stem Cells. Cell Transplant 2016; 25:863-82. [PMID: 26787093 DOI: 10.3727/096368916x690511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) persist in the subventricular zone lining the ventricles of the adult brain. The resident stem/progenitor cells can be stimulated in vivo by neurotrophic factors, hematopoietic growth factors, magnetic stimulation, and/or physical exercise. In both animals and humans, the differentiation and survival of neurons arising from the subventricular zone may also be regulated by the trophic factors. Since stem/progenitor cells present in the adult brain and the production of new neurons occurs at specific sites, there is a possibility for the treatment of incurable neurological diseases. It might be feasible to induce neurogenesis, which would be particularly efficacious in the treatment of striatal neurodegenerative conditions such as Huntington's disease, as well as cerebrovascular diseases such as ischemic stroke and cerebral palsy, conditions that are widely seen in the clinics. Understanding of the molecular control of endogenous NSC activation and progenitor cell mobilization will likely provide many new opportunities as therapeutic strategies. In this review, we focus on endogenous stem/progenitor cell activation that occurs in response to exogenous factors including neurotrophic factors, hematopoietic growth factors, magnetic stimulation, and an enriched environment. Taken together, these findings suggest the possibility that functional brain repair through induced neurorestoration from endogenous stem cells may soon be a clinical reality.
Collapse
Affiliation(s)
- Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
18
|
Larpthaveesarp A, Ferriero DM, Gonzalez FF. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci 2015; 5:165-77. [PMID: 25942688 PMCID: PMC4493462 DOI: 10.3390/brainsci5020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA 94158, USA.
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|