1
|
Coleman JR, Moore EE, Kelher MR, Jones K, Cohen MJ, Banerjee A, Silliman CC. Losing the forest for the trees: The complexities of fibrinolysis will never be explained with one variable alone. J Trauma Acute Care Surg 2024; 96:e5-e7. [PMID: 37784230 PMCID: PMC11250562 DOI: 10.1097/ta.0000000000004137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fibrinolytic shutdown (versus hypofibrinolysis) = plasmin burst followed by diminished fibrinolysis. After thrombin and plasmin burst, fibrinolysis is inhibited, mediated by increased TAFI. #TAFI #TIC #surgscience @JuliaColemanMD @CUDeptSurg @DenverHealthMed @OhioStateSurg @mitchelljayc
Collapse
|
2
|
Xie Q, Xing H, Wen X, Liu B, Wei Y, Yu Y, Xie X, Song D, Shao G, Xiong Q, Feng Z. Identification of the multiple roles of enolase as an plasminogen receptor and adhesin in Mycoplasma hyopneumoniae. Microb Pathog 2023; 174:105934. [PMID: 36481292 DOI: 10.1016/j.micpath.2022.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent underlying porcine enzootic pneumonia, a chronic respiratory disease worldwide. The recruitment of plasminogen to the surface and subsequently promotion of plasmin conversion by the surface-located receptor, have been reported to assist the adhesion and invasion of Mycoplasmas. The surface localization and plasminogen-binding ability of M. hyopneumoniae enolase were previously confirmed; however, the biological functions were not be determined, especially the role as a plasminogen receptor. Here, using ELISA and SPR analyses, we confirmed the stable binding of M. hyopneumoniae enolase to plasminogen in a dose-dependent manner. The facilitation of the activation of plasminogen in the presence of tPA and direct activation of plasminogen at low efficiency without tPA addition by M. hyopneumoniae enolase were also determined using a plasmin-specific chromogenic substrate. Notably, the C-terminal and N-terminal regions located in M. hyopneumoniae enolase play an important role in plasminogen binding and activation. Additionally, we demonstrate that M. hyopneumoniae enolase can competitively inhibit the adherence of M. hyopneumoniae to PK15 cells. These results provide insight into the role of enolase in M. hyopneumoniae infection, a mechanism that manipulates the proteolytic system of the host.
Collapse
Affiliation(s)
- Qingyun Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Huixuan Xing
- Institute of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, 860000, China
| | - Xiaoyun Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Daesub Song
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
3
|
Speybroeck J, Marsee M, Shariff F, Zackariya N, Grisoli A, Lune SV, Larson EE, Hatch J, McCauley R, Shariff F, Aversa JG, Son M, Agostini V, Campello E, Simioni P, Scărlătescu E, Kwaan H, Hartmann J, Fries D, Walsh M. Viscoelastic testing in benign hematologic disorders: Clinical perspectives and future implications of point-of-care testing to assess hemostatic competence. Transfusion 2021; 60 Suppl 6:S101-S121. [PMID: 33089936 DOI: 10.1111/trf.16088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/04/2023]
Abstract
Viscoelastic tests (VETs) have been used routinely for liver transplantation, cardiac surgery, and trauma, but only recently have found clinical utility in benign hematologic disorders. Therefore, guidelines for diagnosis and treatment of these disorders based on viscoelastic variables have been adapted from the existing transplant, cardiothoracic surgery, and trauma resuscitation literature. As a result, diagnostic and therapeutic strategies for benign hematologic disorders utilizing VETs are not uniform. Accordingly, even though there has been a recent increase in the utilization of VET for the diagnosis and treatment of such disorders, the literature is still in its early stages. Analysis of point-of-care viscoelastic tracings from benign hematologic disorders has the potential to allow prompt recognition of disease and to guide patient-specific intervention. Here we present a review describing the application of VETs to benign hematologic disorders.
Collapse
Affiliation(s)
- Jacob Speybroeck
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Mathew Marsee
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Faadil Shariff
- Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Nuha Zackariya
- Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Anne Grisoli
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Stefani Vande Lune
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Emilee E Larson
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Jordan Hatch
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Ross McCauley
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Faisal Shariff
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - John G Aversa
- Department of General Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Son
- Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Vanessa Agostini
- Department of Transfusion Medicine, IRCC Polyclinic Hospital San Marino, Genoa, Italy
| | - Elena Campello
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padua University Hospital, Padua, Italy
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padua University Hospital, Padua, Italy
| | - Escaterina Scărlătescu
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Hau Kwaan
- Department of Hematology Oncology, Northwestern University School of Medicine, Chicago, Illinois
| | - Jan Hartmann
- Department of Medical Affairs, Haemonetics Corporation, Boston, Massachusetts
| | - Dietmar Fries
- Department of General and Surgical Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Mark Walsh
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana.,Saint Joseph Regional Medical Center, Mishawaka, Indiana
| |
Collapse
|
4
|
Raghuwanshi S, Dahariya S, Sharma DS, Kovuru N, Sahu I, Gutti RK. RUNX1 and TGF‐β signaling cross talk regulates Ca2+ion channels expression and activity during megakaryocyte development. FEBS J 2020; 287:5411-5438. [DOI: 10.1111/febs.15329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Sanjeev Raghuwanshi
- Department of Biochemistry School of Life Sciences University of Hyderabad India
| | - Swati Dahariya
- Department of Biochemistry School of Life Sciences University of Hyderabad India
| | - Durga Shankar Sharma
- Department of Biochemistry School of Life Sciences University of Hyderabad India
| | - Narasaiah Kovuru
- Department of Biochemistry School of Life Sciences University of Hyderabad India
| | - Itishri Sahu
- Department of Biochemistry School of Life Sciences University of Hyderabad India
| | - Ravi Kumar Gutti
- Department of Biochemistry School of Life Sciences University of Hyderabad India
| |
Collapse
|
5
|
Lin H, Xu L, Yu S, Hong W, Huang M, Xu P. Therapeutics targeting the fibrinolytic system. Exp Mol Med 2020; 52:367-379. [PMID: 32152451 PMCID: PMC7156416 DOI: 10.1038/s12276-020-0397-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
The function of the fibrinolytic system was first identified to dissolve fibrin to maintain vascular patency. Connections between the fibrinolytic system and many other physiological and pathological processes have been well established. Dysregulation of the fibrinolytic system is closely associated with multiple pathological conditions, including thrombosis, inflammation, cancer progression, and neuropathies. Thus, molecules in the fibrinolytic system are potent therapeutic and diagnostic targets. This review summarizes the currently used agents targeting this system and the development of novel therapeutic strategies in experimental studies. Future directions for the development of modulators of the fibrinolytic system are also discussed. The fibrinolytic system was originally identified to dissolve blood clots, and is shown to have important roles in other pathological processes, including cancer progression, inflammation, and thrombosis. Molecules or therapeutics targeting fibrinolytic system have been successfully used in the clinical treatments of cancer and thrombotic diseases. The clinical studies and experimental models targeting fibrinolytic system are reviewed by Haili Lin at Sanming First Hosipital, Mingdong Huang at Fuzhou University in China, and Peng Xu at A*STAR in Singapore to demonstrate fibrinolytic system as novel therapeutic targets. As an example, the inhibition of fibrinolytic system protein can be used to suppress cancer prolifieration and metastasis. This review also discusses the potential therapeutic effects of inhibitiors of fibrinolytic system on inflammatory disorders.
Collapse
Affiliation(s)
- Haili Lin
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Luning Xu
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China.
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| |
Collapse
|
6
|
Bravo D, Josephson AM, Bradaschia-Correa V, Wong MZ, Yim NL, Neibart SS, Lee SN, Huo J, Coughlin T, Mizrahi MM, Leucht P. Temporary inhibition of the plasminogen activator inhibits periosteal chondrogenesis and promotes periosteal osteogenesis during appendicular bone fracture healing. Bone 2018; 112:97-106. [PMID: 29680264 PMCID: PMC5970081 DOI: 10.1016/j.bone.2018.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/11/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Aminocaproic acid is approved as an anti-fibrinolytic for use in joint replacement and spinal fusion surgeries to limit perioperative blood loss. Previous animal studies have demonstrated a pro-osteogenic effect of aminocaproic acid in spine fusion models. Here, we tested if aminocaproic acid enhances appendicular bone healing and we sought to uncover the effect of aminocaproic acid on osteoprogenitor cells (OPCs) during bone regeneration. METHODS We employed a well-established murine femur fracture model in adult C57BL/6J mice after receiving two peri-operative injections of aminocaproic acid. Routine histological assays, biomechanical testing and micro-CT analyses were utilized to assess callus volume, and strength, progenitor cell proliferation, differentiation, and remodeling in vivo. Two disparate ectopic transplantation models were used to study the effect of the growth factor milieu within the early fracture hematoma on osteoprogenitor cell fate decisions. RESULTS Aminocaproic acid treated femur fractures healed with a significantly smaller cartilaginous callus, and this effect was also observed in the ectopic transplantation assays. We hypothesized that aminocaproic acid treatment resulted in a stabilization of the early fracture hematoma, leading to a change in the growth factor milieu created by the early hematoma. Gene and protein expression analysis confirmed that aminocaproic acid treatment resulted in an increase in Wnt and BMP signaling and a decrease in TGF-β-signaling, resulting in a shift from chondrogenic to osteogenic differentiation in this model of endochondral bone formation. CONCLUSION These experiments demonstrate for the first time that inhibition of the plasminogen activator during fracture healing using aminocaproic acid leads to a change in cell fate decision of periosteal osteoprogenitor cells, with a predominance of osteogenic differentiation, resulting in a larger and stronger bony callus. These findings may offer a promising new use of aminocaproic acid, which is already FDA-approved and offers a very safe risk profile.
Collapse
Affiliation(s)
- D Bravo
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - A M Josephson
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - V Bradaschia-Correa
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - M Z Wong
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - N L Yim
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - S S Neibart
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - S N Lee
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - J Huo
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - T Coughlin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - M M Mizrahi
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - P Leucht
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
7
|
Bao CX, Zhang DX, Wang NN, Zhu XK, Zhao Q, Sun XL. MicroRNA-335-5p suppresses lower extremity deep venous thrombosis by targeted inhibition of PAI-1 via the TLR4 signalingpathway. J Cell Biochem 2018; 119:4692-4710. [PMID: 29278662 DOI: 10.1002/jcb.26647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
This study aims to investigate the effects of microRNA-335-5p (miR-335-5p) on lower-extremity deep vein thrombosis (LEDVT) by targeting PAI-1 through the TLR4 signaling pathway in rat models. siRNA, mimic, and inhibitor were used for transfection. The miR-335-5p expression was detected by in situ hybridization. CCK-8 assay and flow cytometry were adopted to detect proliferation, cell cycle, and apoptosis, respectively. Scratch test and Matrigel-based tube formation assay were used to detect the effect of miR-335-5p on cell migration ability and tube formation ability. A miR-335-5p lentivirus plasmid was constructed and injected into LEDVT rats. The length and weight of thrombus were measured, changes of thrombus recanalization were observed by CD34 immunohistochemistry, and levels of PAI-1 and inflammatory factors in femoral vein blood were detected by ELISA. LEDVT rats showed a higher AOD value of PAI-1, higher expression of PAI-1, NF-κB, Rac1, IL-1β, and TLR4 and a lower miR-335-5p expression. PAI-1 and miR-335-5p were negatively correlated. Compared to the blank and siRNA-NC groups, the miR-335-5p mimic and siRNA-PAI-1 groups showed declined expression of PAI-1, TLR4, NF-κB, Rac1, and IL-1β, increased proliferation and tube formation abilities, less cells in G0/G1 phase, and decreased apoptosis, decreased length and weight of thrombus, organized thrombus, increased new blood vessels, and decreased levels of PAI-1, IL-1, IL-6, and Tnf-a. miR-335-5p may suppress the occurrence and development of LEDVT in rats by repressing the activation of the TLR4 signaling pathway by targeted inhibition of PAI-1.
Collapse
Affiliation(s)
- Cui-Xia Bao
- Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P. R. China
| | - Dong-Xia Zhang
- Department of Cardiovascular Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P. R. China
| | - Na-Na Wang
- Clinical Laboratory, Yantai Yeda Hospital, Yantai, P. R. China
| | - Xiang-Kui Zhu
- Department of Radiology, Yantai Stomatological Hospital, Yantai, P. R. China
| | - Qi Zhao
- Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P. R. China
| | - Xiao-Lei Sun
- Department of Cardiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, P. R. China
| |
Collapse
|
8
|
Chen R, Yan J, Liu P, Wang Z, Wang C. Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: The roles of PAI-1 and obesity on stroke. Metab Brain Dis 2017; 32:667-673. [PMID: 28378106 DOI: 10.1007/s11011-017-0007-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/30/2017] [Indexed: 12/18/2022]
Abstract
One of the global socioeconomic phenomena occurred during the last decades is the increased prevalence of obesity, with direct consequence on the risk of developing thrombotic disorders. As the physiological inhibitor of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) is well known for its role in fibrinolysis. More and more evidences have shown that PAI-1 involves in physiopathologic mechanisms of many diseases and metabolic disorder. Increased serum level of PAI-1 has been observed in obesity and it also contributes to the development of adipose tissue and then has effects on obesity. Meantime, obesity affects also the PAI-1 levels. These evidences indicate the complicated interaction between PAI-1 and obesity. Many clinic studies have confirmed that obesity relates to the stroke outcome although there are many contradictory results. Simultaneously, correlation is found between plasma PAI-1 and thrombotic cerebrovascular diseases. This article reviews contemporary knowledge regarding the complex interplay of obesity, PAI-1 and stroke.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Peijing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
9
|
Pautus S, Alami M, Adam F, Bernadat G, Lawrence DA, De Carvalho A, Ferry G, Rupin A, Hamze A, Champy P, Bonneau N, Gloanec P, Peglion JL, Brion JD, Bianchini EP, Borgel D. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1. Sci Rep 2016; 6:36462. [PMID: 27876785 PMCID: PMC5120274 DOI: 10.1038/srep36462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.
Collapse
Affiliation(s)
- Stéphane Pautus
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Mouad Alami
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Fréderic Adam
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Guillaume Bernadat
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Allan De Carvalho
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Gilles Ferry
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Alain Rupin
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Abdallah Hamze
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Pierre Champy
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Natacha Bonneau
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Philippe Gloanec
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Louis Peglion
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Daniel Brion
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Elsa P Bianchini
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,AP-HP, Hôpital Necker, Service d'Hématologie Biologique, 75015 Paris, France
| |
Collapse
|