1
|
Keane RW, Hadad R, Scott XO, Cabrera Ranaldi EDLRM, Pérez-Bárcena J, de Rivero Vaccari JP. Neural-Cardiac Inflammasome Axis after Traumatic Brain Injury. Pharmaceuticals (Basel) 2023; 16:1382. [PMID: 37895853 PMCID: PMC10610322 DOI: 10.3390/ph16101382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Traumatic brain injury (TBI) affects not only the brain but also peripheral organs like the heart and the lungs, which influences long-term outcomes. A heightened systemic inflammatory response is often induced after TBI, but the underlying pathomechanisms that contribute to co-morbidities remain poorly understood. Here, we investigated whether extracellular vehicles (EVs) containing inflammasome proteins are released after severe controlled cortical impact (CCI) in C57BL/6 mice and cause activation of inflammasomes in the heart that result in tissue damage. The atrium of injured mice at 3 days after TBI showed a significant increase in the levels of the inflammasome proteins AIM2, ASC, caspases-1, -8 and -11, whereas IL-1β was increased in the ventricles. Additionally, the injured cortex showed a significant increase in IL-1β, ASC, caspases-1, -8 and -11 and pyrin at 3 days after injury when compared to the sham. Serum-derived extracellular vesicles (EVs) from injured patients were characterized with nanoparticle tracking analysis and Ella Simple Plex and showed elevated levels of the inflammasome proteins caspase-1, ASC and IL-18. Mass spectrometry of serum-derived EVs from mice after TBI revealed a variety of complement- and cardiovascular-related signaling proteins. Moreover, adoptive transfer of serum-derived EVs from TBI patients resulted in inflammasome activation in cardiac cells in culture. Thus, TBI elicits inflammasome activation, primarily in the atrium, that is mediated, in part, by EVs that contain inflammasome- and complement-related signaling proteins that are released into serum and contribute to peripheral organ systemic inflammation, which increases inflammasome activation in the heart.
Collapse
Affiliation(s)
- Robert W. Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xavier O. Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erika d. l. R. M. Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Lipopolysaccharide Promotes the Proliferation and Differentiation of Goose Embryonic Myoblasts by Promoting Cytokine Expression and Appropriate Apoptosis Processes. Vet Sci 2022; 9:vetsci9110615. [PMID: 36356092 PMCID: PMC9692480 DOI: 10.3390/vetsci9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS) can trigger a series of immune reactions, leading to the occurrence of disease and a decrease in the growth performance of geese. However, the mechanisms of LPS in geese muscle development have not been reported. This study aimed to investigate the effects and mechanisms of LPS on proliferation and differentiation of goose embryonic myoblasts. Embelin and belnacasan combined with LPS were used to explore these effects. Our results demonstrated that LPS significantly induced inflammatory cytokine production in both proliferation and differentiation stages. LPS and embelin treatment significantly improved the proliferation ability (p < 0.05), while LPS reduced the differentiation ability of goose embryonic myoblasts. By adding embelin, the differentiation ability of myoblasts was enhanced, while by adding belnacasan, LPS treatment led to a lower differentiation ability. Combined with the correlation of the expression levels of myogenic, cell cycle, and inflammatory-related genes and proteins, it is speculated that one of the reason for the decrease of differentiation ability of goose embryo myoblasts induced by LPS is the increase of the expression levels of pro-inflammatory factors. Moreover, LPS, embelin and belnacasan, and LPS treatments could significantly increase the apoptosis rate of goose embryonic myoblasts. Taken together, these findings suggest that LPS promotes the proliferation and differentiation of goose embryonic myoblasts by promoting cytokine expression and appropriate apoptosis processes. These findings lay a foundation for the study of the mechanisms of LPS in goose muscle development.
Collapse
|
4
|
Muñoz-Mata LS, López-Cárdenas MT, Espinosa-Montesinos A, Sosa-Delgado SM, Rosales-García VH, Moreno-Lafont MC, Ramón-Gallegos E. Photodynamic therapy stimulates IL-6 and IL-8 in responding patients with HPV infection associated or not with LSIL. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Goldstein DS. Stress and the "extended" autonomic system. Auton Neurosci 2021; 236:102889. [PMID: 34656967 PMCID: PMC10699409 DOI: 10.1016/j.autneu.2021.102889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
This review updates three key concepts of autonomic neuroscience-stress, the autonomic nervous system (ANS), and homeostasis. Hans Selye popularized stress as a scientific idea. He defined stress variously as a stereotyped response pattern, a state that evokes this pattern, or a stimulus that evokes the state. According to the "homeostat" theory stress is a condition where a comparator senses a discrepancy between sensed afferent input and a response algorithm, the integrated error signal eliciting specific patterns of altered effector outflows. Scientific advances since Langley's definition of the ANS have incited the proposal here of the "extended autonomic system," or EAS, for three reasons. (1) Several neuroendocrine systems are bound inextricably to Langley's ANS. The first to be described, by Cannon in the early 1900s, involves the hormone adrenaline, the main effector chemical of the sympathetic adrenergic system. Other neuroendocrine systems are the hypothalamic-pituitary-adrenocortical system, the arginine vasopressin system, and the renin-angiotensin-aldosterone system. (2) An evolving body of research links the ANS complexly with inflammatory/immune systems, including vagal anti-inflammatory and catecholamine-related inflammasomal components. (3) A hierarchical network of brain centers (the central autonomic network, CAN) regulates ANS outflows. Embedded within the CAN is the central stress system conceptualized by Chrousos and Gold. According to the allostasis concept, homeostatic input-output curves can be altered in an anticipatory, feed-forward manner; and prolonged or inappropriate allostatic adjustments increase wear-and-tear (allostatic load), resulting in chronic, stress-related, multi-system disorders. This review concludes with sections on clinical and therapeutic implications of the updated concepts offered here.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Autonomic Medicine Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD 20892-1620, USA..
| |
Collapse
|
6
|
Expression of Toll-Like Receptors in the Animal Model of Bladder Outlet Obstruction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6632359. [PMID: 33381567 PMCID: PMC7749780 DOI: 10.1155/2020/6632359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
Introduction Bladder outlet obstruction (BOO) occurs in more than 20 percent of the adult population and may lead to changes in the structure and function of the bladder. The main objective of the study was to evaluate the expression of Toll-like receptor 4 (TLR 4) and Toll-like receptor 9 (TLR 9) in the animal model of BOO as potential triggers of the inflammation phase in the bladder. In addition, the modulating effect of alpha-1 adrenergic antagonist (tamsulosin) on TLR 4 and TLR 9 expression and inflammatory markers was assessed. Material and Methods. Thirty-two male, 9-week-old Sprague Dawley rats were randomly divided into 4 groups: SOP—sham-operated rats with a placebo (water); SOB—sham-operated rats with an alpha-1 adrenergic antagonist; BOOP—rats with BOO and a placebo; and BOOB—rats with BOO and an alpha-1 adrenergic antagonist. The rats were given a placebo or alpha-1 adrenergic antagonist for 15 days. Next, urine and the bladder were collected from the rats for histopathological and biochemical study. Results Histopathological analysis showed chronic inflammation without acute inflammation in the bladder. TLR 4 showed positive cytoplasmic reactivity in the urothelium and the smooth muscles of the bladder. TLR 9 showed positive cytoplasmic reactivity only in the urothelium. BOO caused an increase in TLR 4 and TLR 9 expression. Furthermore, treatment with an alpha-1 adrenergic antagonist had no significant effect on TLR 4 and TLR 9 expression in rats with BOO. BOO caused a significant increase in urine concentration of interleukin 6 (IL-6), while alpha-1 antagonist reduced the urine concentration of IL-6 and the concentration of interleukin 18 (IL-18). Conclusions The results suggest the participation of TLR 4 and TLR 9 receptors in the induction of inflammation in the bladder, which is the first phase in the development of pathophysiological changes in BOO.
Collapse
|
7
|
Abstract
The pandemic viral illness COVID-19 is especially life-threatening in the elderly and in those with any of a variety of chronic medical conditions. This essay explores the possibility that the heightened risk may involve activation of the "extended autonomic system" (EAS). Traditionally, the autonomic nervous system has been viewed as consisting of the sympathetic nervous system, the parasympathetic nervous system, and the enteric nervous system. Over the past century, however, neuroendocrine and neuroimmune systems have come to the fore, justifying expansion of the meaning of "autonomic." Additional facets include the sympathetic adrenergic system, for which adrenaline is the key effector; the hypothalamic-pituitary-adrenocortical axis; arginine vasopressin (synonymous with anti-diuretic hormone); the renin-angiotensin-aldosterone system, with angiotensin II and aldosterone the main effectors; and cholinergic anti-inflammatory and sympathetic inflammasomal pathways. A hierarchical brain network-the "central autonomic network"-regulates these systems; embedded within it are components of the Chrousos/Gold "stress system." Acute, coordinated alterations in homeostatic settings (allostasis) can be crucial for surviving stressors such as traumatic hemorrhage, asphyxiation, and sepsis, which throughout human evolution have threatened homeostasis; however, intense or long-term EAS activation may cause harm. While required for appropriate responses in emergencies, EAS activation in the setting of chronically decreased homeostatic efficiencies (dyshomeostasis) may reduce thresholds for induction of destabilizing, lethal vicious cycles. Testable hypotheses derived from these concepts are that biomarkers of EAS activation correlate with clinical and pathophysiologic data and predict outcome in COVID-19 and that treatments targeting specific abnormalities identified in individual patients may be beneficial.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
8
|
|
9
|
Cooper DM, Radom-Aizik S. Exercise-associated prevention of adult cardiovascular disease in children and adolescents: monocytes, molecular mechanisms, and a call for discovery. Pediatr Res 2020; 87:309-318. [PMID: 31649340 PMCID: PMC11177628 DOI: 10.1038/s41390-019-0581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
Atherosclerosis originates in childhood and adolescence. The goal of this review is to highlight how exercise and physical activity during childhood and adolescence, critical periods of growth and development, can prevent adult cardiovascular disease (CVD), particularly through molecular mechanisms of monocytes, a key cell of the innate immune system. Monocytes are heterogeneous and pluripotential cells that can, paradoxically, play a role in both the instigation and prevention of atherosclerosis. Recent discoveries in young adults reveal that brief exercise affects monocyte gene pathways promoting a cell phenotype that patrols the vascular system and repairs injuries. Concurrently, exercise inhibits pro-inflammatory monocytes, cells that contribute to vascular damage and plaque formation. Because CVD is typically asymptomatic in youth, minimally invasive techniques must be honed to study the subtle anatomic and physiologic evidence of vascular dysfunction. Exercise gas exchange and heart rate measures can be combined with ultrasound assessments of vascular anatomy and reactivity, and near-infrared spectroscopy to quantify impaired O2 transport that is often hidden at rest. Combined with functional, transcriptomic, and epigenetic monocyte expression and measures of monocyte-endothelium interaction, molecular mechanisms of early CVD can be formulated, and then translated into effective physical activity-based strategies in youth to prevent adult-onset CVD.
Collapse
Affiliation(s)
- Dan M Cooper
- Pediatric Exercise and Genomics Research Center, University of California Irvine School of Medicine, Pediatrics, Irvine, CA, USA.
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, University of California Irvine School of Medicine, Pediatrics, Irvine, CA, USA
| |
Collapse
|
10
|
Rasmussen G, Idosa BA, Bäckman A, Monecke S, Strålin K, Särndahl E, Söderquist B. Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia. Microbiol Immunol 2019; 63:487-499. [PMID: 31403210 PMCID: PMC6916170 DOI: 10.1111/1348-0421.12738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
Abstract
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.
Collapse
Affiliation(s)
- Gunlög Rasmussen
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Berhane Asfaw Idosa
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Bäckman
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Sweden
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), InfectoGnostics Research Campus Jena, Jena, Germany
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
11
|
Awad F, Assrawi E, Jumeau C, Odent S, Despert V, Cam G, Perdriger A, Louvrier C, Cobret L, Copin B, Chantot-Bastaraud S, Duquesnoy P, Piterboth W, Le Jeunne C, Quenum-Miraillet G, Siffroi JP, Georgin-Lavialle S, Grateau G, Legendre M, Giurgea I, Karabina SA, Amselem S. The NLRP3 p.A441V Mutation in NLRP3-AID Pathogenesis: Functional Consequences, Phenotype-Genotype Correlations and Evidence for a Recurrent Mutational Event. ACR Open Rheumatol 2019; 1:267-276. [PMID: 31777803 PMCID: PMC6857991 DOI: 10.1002/acr2.1039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective To determine the molecular and cellular bases of autoinflammatory syndromes in a multigenerational French family with Muckle-Wells syndrome and in a patient originating from Portugal with familial cold autoinflammatory syndrome. Methods Sequencing of NLRP3 exon 3 was performed in all accessible patients. Microsatellite and whole-genome single nucleotide polymorphism genotyping was used i) to test the intrafamilial segregation of the identified variant and ii) to look for a founder effect. Functional analyses included the study of i) apoptosis-associated speck-like protein containing a CARD (ASC) speck formation in HEK293T cells (stably expressing ASC-green fluorescent protein and pro-caspase 1-FLAG) transiently expressing the wild-type or mutated NLRP3 protein, ii) levels of IL-1β secreted from transfected THP-1 cells, and iii) inflammasome-related gene expression and cytokine secretion from monocytes isolated from patients in crisis (probands from the two families), related patients out of crisis, and from controls. Results The same heterozygous mutation (c.1322C>T, p.A441V) located in the NACHT domain, segregating with the disease within the first family, was identified in the two families. This mutation was found to be associated with different core haplotypes. NLRP3-A441V led to increased ASC speck formation and high levels of secreted IL-1β. Monocyte inflammasome-related gene expression and cytokine secretion, which were within the normal range in patients out of crisis, were found to be differentially regulated between the two probands, correlating with their phenotypic status. Conclusion These molecular and cellular findings, which indicate a recurrent mutational event, clearly demonstrate the pathogenicity of the p.A441V missense mutation in NLRP3-associated autoinflammatory disease and point to the interest of studying patients' primary cells to assess disease activity.
Collapse
Affiliation(s)
- Fawaz Awad
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| | - Eman Assrawi
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| | - Claire Jumeau
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| | - Sylvie Odent
- Centre Hospitalier Universitaire de Rennes 35203 Rennes France
| | | | - Gérard Cam
- Centre Hospitalier de Saint-Malo 35400 Saint-Malo France
| | - Aleth Perdriger
- Centre Hospitalier Universitaire de Rennes 35203 Rennes France
| | | | | | - Bruno Copin
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| | | | | | | | - Claire Le Jeunne
- Assistance Publique-Hôpitaux de Paris Hôpital Cochin Paris France
| | | | | | - Sophie Georgin-Lavialle
- Sorbonne Université INSERM, Hôpital Trousseau and Assistance Publique-Hôpitaux de Paris Hôpital Tenon Paris France
| | - Gilles Grateau
- Sorbonne Université INSERM, Hôpital Trousseau and Assistance Publique-Hôpitaux de Paris Hôpital Tenon Paris France
| | - Marie Legendre
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| | - Irina Giurgea
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| | | | - Serge Amselem
- Sorbonne Université INSERM, Hôpital Trousseau Paris France
| |
Collapse
|
12
|
Willemze RA, Welting O, van Hamersveld P, Verseijden C, Nijhuis LE, Hilbers FW, Meijer SL, Heesters BA, Folgering JHA, Darwinkel H, Blancou P, Vervoordeldonk MJ, Seppen J, Heinsbroek SEM, de Jonge WJ. Loss of intestinal sympathetic innervation elicits an innate immune driven colitis. Mol Med 2019; 25:1. [PMID: 30616543 PMCID: PMC6322236 DOI: 10.1186/s10020-018-0068-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Both the parasympathetic and sympathetic nervous system exert control over innate immune responses. In inflammatory bowel disease, sympathetic innervation in intestinal mucosa is reduced. Our aim was to investigate the role of sympathetic innervation to the intestine on regulation of the innate immune responses. METHODS In lipopolysaccharide (LPS)-stimulated macrophages, we evaluated the effect of adrenergic receptor activation on cytokine production and metabolic profile. In vivo, the effect of sympathetic denervation on mucosal innate immune responses using 6-hydroxydopamine (6-OHDA), or using surgical transection of the superior mesenteric nerve (sympathectomy) was tested in Rag1-/- mice that lack T- and B-lymphocytes. RESULTS In murine macrophages, adrenergic β2 receptor activation elicited a dose-dependent reduction of LPS-induced cytokines, reduced LPS-induced glycolysis and increased maximum respiration. Sympathectomy led to a significantly decreased norepinephrine concentration in intestinal tissue. Within 14 days after sympathectomy, mice developed clinical signs of colitis, colon oedema and excess colonic cytokine production. Both 6-OHDA and sympathectomy led to prominent goblet cell depletion and histological damage of colonic mucosa. CONCLUSIONS We conclude that the sympathetic nervous system plays a regulatory role in constraining innate immune cell reactivity towards microbial challenges, likely via the adrenergic β2 receptor.
Collapse
Affiliation(s)
- Rose A Willemze
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands.
| | - Olaf Welting
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Patricia van Hamersveld
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Caroline Verseijden
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Laurens E Nijhuis
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Francisca W Hilbers
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Sybren L Meijer
- Amsterdam UMC, Department of Pathology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Balthasar A Heesters
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joost H A Folgering
- Charles River Laboratories, Discovery, De Mudden 16, 9747 AW, Groningen, The Netherlands
| | - Harold Darwinkel
- Charles River Laboratories, Discovery, De Mudden 16, 9747 AW, Groningen, The Netherlands
| | - Philippe Blancou
- Institute of Molecular and Cellular Pharmacology, Nice Sophia Antipolis University, 660 Route des Lucioles, 06560, Valbonne, France
| | | | - Jurgen Seppen
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Sigrid E M Heinsbroek
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Abstract
Traumatic injury as one of the world's most relevant but neglected health concerns results in modulated inflammasome activity, which is closely linked to the development of post-injury complications. Cytokine-producing capacity of cells is important for the appropriate immune response to trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Unfortunately, the precise role of inflammasome in trauma is still largely unknown. However, in the following chapter, we provide an overview on the best described inflammasomes in the various settings of trauma, introducing the recent findings on the up-to-date best described NLRP inflammasomes and underlying cytokines in the inflammatory response to trauma.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|