1
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
2
|
Khayatan D, Nouri K, Momtaz S, Roufogalis BD, Alidadi M, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Plant-Derived Fermented Products: An Interesting Concept for Human Health. Curr Dev Nutr 2024; 8:102162. [PMID: 38800633 PMCID: PMC11126794 DOI: 10.1016/j.cdnut.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024] Open
Abstract
The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Nouri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Olaniran AF, Taiwo AE, Bamidele OP, Iranloye YM, Malomo AA, Olaniran OD. The role of nutraceutical fruit drink on neurodegenerative diseases: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abiola Folakemi Olaniran
- Landmark University SDG 12 (Responsible Consumption and Production Group) Department of Food Science and Nutrition College of Agriculture Landmark University P.M.B. 1001 Omu‐Aran Kwara State Nigeria
| | - Abiola Ezekiel Taiwo
- Department of Chemical Engineering College of Engineering Landmark University PMB 1001 Omu Aran Nigeria
| | | | - Yetunde Mary Iranloye
- Landmark University SDG 12 (Responsible Consumption and Production Group) Department of Food Science and Nutrition College of Agriculture Landmark University P.M.B. 1001 Omu‐Aran Kwara State Nigeria
| | - Adekunbi Adetola Malomo
- Department of Food Science and Technology Faculty of Technology Obafemi Awolowo University Ile‐Ife Nigeria
| | | |
Collapse
|
4
|
Benefits of Fermented Papaya in Human Health. Foods 2022; 11:foods11040563. [PMID: 35206040 PMCID: PMC8870802 DOI: 10.3390/foods11040563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have been used for several years all over the world, due to their unique nutritional characteristics and because fermentation promotes conservation and food security. Moreover, fermented foods and beverages have a strong impact on human gut microbiota. Papaya is the fruit of the Carica papaya plant, traditionally used as a medicinal fruit, but there are also references to the use of the fermented form of this fruit. The main purpose of this review is to provide an improved understanding of fermented papaya nutritional and health applications. A literature search was conducted in the PubMed and Google Scholar databases. Both in vitro and in vivo studies were included. According to the retrieved studies, fermented papaya has proven to be an excellent antioxidant and an excellent nutraceutical adjuvant in combined therapies against several diseases, such as Alzheimer’s disease, allergic reactions, anticancer activity, and anemias. Therefore, it is concluded that fermented papaya has many benefits for human health and can be used as prevention or aid in the treatment of various diseases.
Collapse
|
5
|
Ghosh N, Das A, Biswas N, Mahajan SP, Madeshiya AK, Khanna S, Sen CK, Roy S. MYO-Inositol In Fermented Sugar Matrix Improves Human Macrophage Function. Mol Nutr Food Res 2022; 66:e2100852. [PMID: 35073444 PMCID: PMC9420542 DOI: 10.1002/mnfr.202100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened hos-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolstered respiratory burst activity and improved wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. Additionally, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerges as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| |
Collapse
|
6
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
7
|
Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021; 26:molecules26133921. [PMID: 34206931 PMCID: PMC8271805 DOI: 10.3390/molecules26133921] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose “green cosmetics”, which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.
Collapse
|
8
|
Sirtuin 1 and Skin: Implications in Intrinsic and Extrinsic Aging-A Systematic Review. Cells 2021; 10:cells10040813. [PMID: 33917352 PMCID: PMC8067363 DOI: 10.3390/cells10040813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Skin, as the outermost organ of the body, is constantly exposed to both intrinsic and extrinsic causative factors of aging. Intrinsic aging is related to compromised cellular proliferative capacity, and may be accelerated by harmful environmental influences with the greatest significance of ultraviolet radiation exposure, contributing not only to premature aging, but also to skin carcinogenesis. The overall skin cancer burden and steadily increasing global antiaging market provide an incentive for searching novel targets to improve skin resistance against external injury. Sirtuin 1, initially linked to extension of yeast and rodent lifespan, plays a key role in epigenetic modification of proteins, histones, and chromatin by which regulates the expression of genes implicated in the oxidative stress response and apoptosis. The spectrum of cellular pathways regulated by sirtuin 1 suggests its beneficial impact on skin aging. However, the data on its role in carcinogenesis remains controversial. The aim of this review was to discuss the relevance of sirtuin 1 in skin aging, in the context of intrinsic factors, related to genetic premature aging syndromes, as well as extrinsic modifiable ones, with the assessment of its future application. PubMed were searched from inception to 4 January 2021 for relevant papers with further search carried out on ClinicalTrials.gov. The systematic review included 46 eligible original articles. The evidence from numerous studies proves sirtuin 1 significance in both chronological and premature aging as well as its dual role in cancer development. Several botanical compounds hold the potential to improve skin aging symptoms.
Collapse
|
9
|
Beneficial Role of Carica papaya Extracts and Phytochemicals on Oxidative Stress and Related Diseases: A Mini Review. BIOLOGY 2021; 10:biology10040287. [PMID: 33916114 PMCID: PMC8066973 DOI: 10.3390/biology10040287] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary This review highlights the medicinal benefits of a natural remedy, the Carica papaya extracts and its phytochemicals. In this review, the potential of Carica papaya against various conditions, including cancer, inflammation, aging, healing of the skin, and lifelong diseases has been summarized and discussed. In short, more research and development should focus on this natural remedy that can potentially act as a prophylaxis against chronic diseases. Abstract Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.
Collapse
|
10
|
Zingiber mioga Extract Improves Moisturization and Depigmentation of Skin and Reduces Wrinkle Formation in UVB-Irradiated HRM-2 Hairless Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we investigated the effects of Zingiber mioga extracts (FSH-ZM) on the moisturization and depigmentation of skin as well as wrinkle formation in UVB-irradiated HRM-2 hairless mice. The mice were divided into six groups as follows: normal control (NC), UVB-irradiated control (C), positive control 1 (PC1, L-ascorbic acid 200 mg/kg b.w.), positive control 2 (PC2, Arbutin 200 mg/kg b.w.), Z100 (FSH-ZM 100 mg/kg b.w.), and Z200 (FSH-ZM 200 mg/kg b.w.). The experiment spanned a period of 6 weeks. We found that FSH-ZM led to an increase in the expression of hyaluronan synthase 2, fibrillin-1, and elastin mRNAs, and showed improved skin hydration in HRM-2 hairless mice compared to that in the UVB-irradiated control group. Furthermore, FSH-ZM also inhibited the expression of inflammatory cytokines and wrinkle forming factors generated by UVB and reduced the formation of wrinkles in the test group relative to that in the control group by increasing collagen synthesis. Moreover, we found that FSH-ZM decreased the expression of melanogenesis factors, which improved depigmentation in UVB-irradiated hairless mice. These results suggest that Zingiber mioga can potentially be utilized to develop products aimed at improving skin moisturization and depigmentation and reducing wrinkle formation.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Skin is the main defense organ of the human body against external insults (ultraviolet radiations, infections by pathogenic microorganisms, and mechanical and chemical stress). The integrity and functions of the skin barrier are supported by an adequate supply of micronutrients, such as several vitamins. The purpose of this review was to analyze all vitamin-related skin problems. RECENT FINDINGS The World Health Organization has estimated that more than 2 billion people worldwide experience deficiencies in the intake of essential vitamins and minerals; the percentage of adults all over the world using daily vitamin supplements, for treatment or prevention of chronic disease, has increased very rapidly in recent years. In this review, 65 studies have been selected in order to examine the role of the main vitamins and their derivatives involved in maintaining the well-being of the skin and their use as prophylactic and therapeutic agents in the management of skin disorders.
Collapse
|
12
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
13
|
Logozzi M, Di Raimo R, Mizzoni D, Andreotti M, Spada M, Macchia D, Fais S. Beneficial Effects of Fermented Papaya Preparation (FPP ®) Supplementation on Redox Balance and Aging in a Mouse Model. Antioxidants (Basel) 2020; 9:antiox9020144. [PMID: 32046112 PMCID: PMC7070551 DOI: 10.3390/antiox9020144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
In recent decades much attention has been paid to how dietary antioxidants may positively affect the human health, including the beneficial effects of fermented foods and beverages. Fermented Papaya Preparation (FPP®) has been shown to represent a valuable approach to obtain systemic antioxidants effect. In this study, we wanted to verify whether FPP® had a clear and scientifically supported in vivo anti-aging effect together with the induction of a systemic antioxidant reaction. To this purpose we daily treated a mouse model suitable for aging studies (C57BL/6J) with FPP®-supplemented water from either the 6th weeks (early treatment) or the 51th weeks (late treatment) of age as compared to mice receiving only tap water. After 10 months of FPP® treatment, we evaluated the telomerase activity, antioxidants and Reactive Oxygen Species ROS plasmatic levels and the telomeres length in the bone marrow and ovaries in both mice groups. The results showed that the daily FPP® assumption induced increase in telomeres length in bone marrow and ovary, together with an increase in the plasmatic levels of telomerase activity, and antioxidant levels, with a decrease of ROS. Early treatment resulted to be more effective, suggesting a potential key role of FPP® in preventing the age-related molecular damages.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Massimo Spada
- Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (D.M.)
| | - Daniele Macchia
- Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (D.M.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (R.D.R.); (D.M.)
- Correspondence: ; Tel.: +39-0649903195; Fax: +39-0649902436
| |
Collapse
|
14
|
Oral Administration of Fermented Papaya (FPP ®) Controls the Growth of a Murine Melanoma through the In Vivo Induction of a Natural Antioxidant Response. Cancers (Basel) 2019; 11:cancers11010118. [PMID: 30669508 PMCID: PMC6356895 DOI: 10.3390/cancers11010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022] Open
Abstract
Prolonged oxidative stress may play a key role in tumor development. Antioxidant molecules are contained in many foods and seem to have a potential role in future anti-tumor strategies. Among the natural antioxidants the beneficial effect of Fermented Papaya (FPP®) is well known. The aim of this study was to investigate the effects of orally administered FPP® in either the prevention or treatment of a murine model of melanoma. The tumor growth was analyzed together with the blood levels of both oxidants (ROS) and anti-oxidants (SOD-1 and GSH). The results showed that FPP® controlled tumor growth, reducing the tumor mass of about three to seven times vs. untreated mice. The most significant effect was obtained with sublingual administration of FPP® close to the inoculation of melanoma. At the time of the sacrifice none of mice treated with FPP® had metastases and the subcutaneous tumors were significantly smaller and amelanotic, compared to untreated mice. Moreover, the FPP® anti-tumor effect was consistent with the decrease of total ROS levels and the increase in the blood levels of GSH and SOD-1. This study shows that a potent anti-oxidant treatment through FPP® may contribute to both preventing and inhibiting tumors growth.
Collapse
|
15
|
Park JE, Hyun YJ, Piao MJ, Kang KA, Ryu YS, Shilnikova K, Zhen AX, Ahn MJ, Ahn YS, Koh YS, Kang HK, Hyun JW. Mackerel-derived fermented fish oil protects skin against UVB-induced cellular damage by inhibiting oxidative stress. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
16
|
Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies. Nutrients 2018; 10:nu10070807. [PMID: 29932449 PMCID: PMC6073419 DOI: 10.3390/nu10070807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022] Open
Abstract
Pre-clinical cell and animal nutrigenomic studies have long suggested the modulation of the transcription of multiple gene targets in cells and tissues as a potential molecular mechanism of action underlying the beneficial effects attributed to plant-derived bioactive compounds. To try to demonstrate these molecular effects in humans, a considerable number of clinical trials have now explored the changes in the expression levels of selected genes in various human cell and tissue samples following intervention with different dietary sources of bioactive compounds. In this review, we have compiled a total of 75 human studies exploring gene expression changes using quantitative reverse transcription PCR (RT-qPCR). We have critically appraised the study design and methodology used as well as the gene expression results reported. We herein pinpoint some of the main drawbacks and gaps in the experimental strategies applied, as well as the high interindividual variability of the results and the limited evidence supporting some of the investigated genes as potential responsive targets. We reinforce the need to apply normalized procedures and follow well-established methodological guidelines in future studies in order to achieve improved and reliable results that would allow for more relevant and biologically meaningful results.
Collapse
|
17
|
Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, Micol V. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies. Nutrients 2018; 10:nu10040403. [PMID: 29587342 PMCID: PMC5946188 DOI: 10.3390/nu10040403] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
The skin is the body’s largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.
Collapse
Affiliation(s)
- Almudena Pérez-Sánchez
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, 03202 Elche, Spain.
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, 03202 Elche, Spain.
- Ilice Effitech, UMH Scientific Park, 03202 Elche, Spain.
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, 03202 Elche, Spain.
- Ilice Effitech, UMH Scientific Park, 03202 Elche, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, 03202 Elche, Spain.
- Ilice Effitech, UMH Scientific Park, 03202 Elche, Spain.
- CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 07122 Palma Sola, Spain.
| |
Collapse
|
18
|
Kim SJ, Kim JH, Lee JU, Kim MY, Lee LK, Park BS, Yang SM, Lee WD, Noh JW, Shin YS, Kim DH, Kim IH, Kim J. Analysis of Skin Parameters of Korean Men According to the Parts of the Body for Integumentary Physiotherapy Research. Health (London) 2018. [DOI: 10.4236/health.2018.104038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Pullar JM, Carr AC, Vissers MCM. The Roles of Vitamin C in Skin Health. Nutrients 2017; 9:E866. [PMID: 28805671 PMCID: PMC5579659 DOI: 10.3390/nu9080866] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
The primary function of the skin is to act as a barrier against insults from the environment, and its unique structure reflects this. The skin is composed of two layers: the epidermal outer layer is highly cellular and provides the barrier function, and the inner dermal layer ensures strength and elasticity and gives nutritional support to the epidermis. Normal skin contains high concentrations of vitamin C, which supports important and well-known functions, stimulating collagen synthesis and assisting in antioxidant protection against UV-induced photodamage. This knowledge is often used as a rationale for the addition of vitamin C to topical applications, but the efficacy of such treatment, as opposed to optimising dietary vitamin C intake, is poorly understood. This review discusses the potential roles for vitamin C in skin health and summarises the in vitro and in vivo research to date. We compare the efficacy of nutritional intake of vitamin C versus topical application, identify the areas where lack of evidence limits our understanding of the potential benefits of vitamin C on skin health, and suggest which skin properties are most likely to benefit from improved nutritional vitamin C intake.
Collapse
Affiliation(s)
- Juliet M Pullar
- Department of Pathology, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| | - Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| | - Margreet C M Vissers
- Department of Pathology, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| |
Collapse
|