1
|
Abdel-Hamid NM, ElNakeeb NA, El-Senduny FF. Efficient chemosensitizing and antimetastatic combinations of a naturally occurring trans-ferulic acid with different chemotherapies on an in vitro hepatocellular carcinoma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1741-1747. [PMID: 36811666 DOI: 10.1007/s00210-023-02431-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Trans-ferulic acid (TFA) is a polyphenolic compound present in many dietary supplements. The aim of this study was to get better chemotherapeutic outcomes through treatment protocols for human hepatocellular carcinoma (HCC). This study focused on the exploration of the in vitro influence of a combination of TFA with 5-fluorouracil (5-FU), doxorubicin (DOXO), and cisplatin (CIS) on HepG2 cell line. Treatment with 5-FU, DOXO, and CIS alone down-regulated oxidative stress and alpha-fetoprotein (AFP), and decreased cell migration through the depression of metalloproteinases (MMP-3, MMP-9, and MMP-12) expression. Co-treatment with TFA synergized the effects of these chemotherapies by decreased MMP-3, MMP-9, and MMP-12 expression, and gelatinolytic activity of both MMP-9 and MMP-2 in cancer cells. TFA significantly reduced the elevated levels of AFP and NO, and depressed cell migration ability (metastasis) in HepG2 groups. Co-treatment with TFA elevated the chemotherapeutic potency of 5-FU, DOXO, and CIS in managing HCC.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Nadia A ElNakeeb
- Department of Chemistry, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Holanda AGA, Cesário BC, Silva VM, Francelino LEC, Nascimento BHM, Damasceno KFA, Ishikawa U, Farias NBS, Junior RFA, Barboza CAG, Junior CA, Antunes JMAP, Moura CEB, Queiroz GF. Use of Cold Atmospheric Plasma in the Treatment of Squamous Cell Carcinoma: in vitro Effects and Clinical Application in Feline Tumors: A Pilot Study. Top Companion Anim Med 2023; 53-54:100773. [PMID: 36990177 DOI: 10.1016/j.tcam.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.
Collapse
Affiliation(s)
- André G A Holanda
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil.
| | - Bruna C Cesário
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Victória M Silva
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Luiz E C Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Bruno H M Nascimento
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Kássia F A Damasceno
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Naisandra B S Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo F A Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos A G Barboza
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clodomiro A Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, RN, Brazil
| | - João M A P Antunes
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Carlos E B Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Genilson F Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
3
|
di Meo NA, Lasorsa F, Rutigliano M, Loizzo D, Ferro M, Stella A, Bizzoca C, Vincenti L, Pandolfo SD, Autorino R, Crocetto F, Montanari E, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232214360. [PMID: 36430837 PMCID: PMC9698586 DOI: 10.3390/ijms232214360] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent histological kidney cancer subtype. Over the last decade, significant progress has been made in identifying the genetic and metabolic alterations driving ccRCC development. In particular, an integrated approach using transcriptomics, metabolomics, and lipidomics has led to a better understanding of ccRCC as a metabolic disease. The metabolic profiling of this cancer could help define and predict its behavior in terms of aggressiveness, prognosis, and therapeutic responsiveness, and would be an innovative strategy for choosing the optimal therapy for a specific patient. This review article describes the current state-of-the-art in research on ccRCC metabolic pathways and potential therapeutic applications. In addition, the clinical implication of pharmacometabolomic intervention is analyzed, which represents a new field for novel stage-related and patient-tailored strategies according to the specific susceptibility to new classes of drugs.
Collapse
Affiliation(s)
- Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Davide Loizzo
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alessandro Stella
- Laboratory of Human Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Cinzia Bizzoca
- Division of General Surgery, Polyclinic Hospital, 70124 Bari, Italy
| | | | | | | | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Emanuele Montanari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Spilotros
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
4
|
Gu Z, Lu W, Xue H, Zhang J, Yang S, Xu L. Syntheses and high selective cytotoxicity of dehydroabietylamine C-ring nitration derivatives. Fitoterapia 2022; 161:105232. [PMID: 35690187 DOI: 10.1016/j.fitote.2022.105232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
Abstract
To find more effective anticancer agents, a series of novel dehydroabietylamine (DA) derivatives were synthesized, focusing on C-ring nitro modifications and C-18 imide introduction. Their cytotoxic activities against human tumor cell line HeLa (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and nonmalignant cell line HUVEC (umbilical vein) in vitro were screened. The C-18 imide heterocyclic compounds 1, 2, and C-ring 14-nitro substituted 14 exhibited moderate to good cytotoxic activities and significant selectivity towards malignant cell lines. More importantly, they were significantly less cytotoxic to nonmalignant cells (HUVEC) than the parent compound and positive control doxorubicin hydrochloride (DOX). Meantime the mechanism of cytotoxicity of DA derivatives was studied. Annexin V-FITC/PI double-staining analysis suggested that cytotoxicity of compounds 2 and 14 was associated with early apoptosis induction. The interaction between compounds and DNA (herring sperm DNA) was studied using absorption spectral analysis and ethidium bromide (EB) fluorescence displacement experiments, the results exhibited that the binding of the compound to DNA was in the intercalative mode. The structure-activity relationship discussion implied that introduction of the nitro-group, especially the 14-nitro group, can significantly improve the cytotoxicity of dehydroabietylimide compounds. The relatively high cytotoxicity and significant high selectivity of compounds 2 and 14 indicated that they were particularly noteworthy. NO released amounts indicated that the amounts of NO released by the compounds bearing nitro-group were quite well associated positive correlation with their cytotoxic activity, which provide a new strategy for structure design of DA anticancer agents in the future.
Collapse
Affiliation(s)
- Zhenzhen Gu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Lu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Huayu Xue
- College of Science, Nanjing Forestry University, Nanjing 210037, China; School of Environmental Engineering, Nanjing Polytechnic Institute, Nanjing 210048, China
| | - Jingjing Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing 210037, China; Institute of Material Physics & Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
CeO2-Zn Nanocomposite Induced Superoxide, Autophagy and a Non-Apoptotic Mode of Cell Death in Human Umbilical-Vein-Derived Endothelial (HUVE) Cells. TOXICS 2022; 10:toxics10050250. [PMID: 35622663 PMCID: PMC9147432 DOI: 10.3390/toxics10050250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
In this study, a nanocomposite of cerium oxide-zinc (CeO2-Zn; 26 ± 11 nm) based on the antioxidant rare-earth cerium oxide (CeO2) nanoparticles (NPs) with the modifier zinc (Zn) was synthesized by sintering method and characterized. Its bio-response was examined in human umbilical-vein-derived endothelial (HUVE) cells to get insight into the components of vascular system. While NPs of CeO2 did not significantly alter cell viability up to a concentration of 200 µg/mL for a 24 h exposure, 154 ± 6 µg/mL of nanocomposite CeO2-Zn induced 50% cytotoxicity. Mechanism of cytotoxicity occurring due to nanocomposite by its Zn content was compared by choosing NPs of ZnO, possibly the closest nanoparticulate form of Zn. ZnO NPs lead to the induction of higher reactive oxygen species (ROS) (DCF-fluorescence), steeper depletion in antioxidant glutathione (GSH) and a greater loss of mitochondrial membrane potential (MMP) as compared to that induced by CeO2-Zn nanocomposite. Nanocomposite of CeO2-Zn, on the other hand, lead to significant higher induction of superoxide radical (O2•−, DHE fluorescence), nitric oxide (NO, determined by DAR-2 imaging and Griess reagent) and autophagic vesicles (determined by Lysotracker and monodansylcadeverine probes) as compared to that caused by ZnO NP treatment. Moreover, analysis after triple staining (by annexin V-FITC, PI, and Hoechst) conducted at their respective IC50s revealed an apoptosis mode of cell death due to ZnO NPs, whereas CeO2-Zn nanocomposite induced a mechanism of cell death that was significantly different from apoptosis. Our findings on advanced biomarkers such as autophagy and mode of cell death suggested the CeO2-Zn nanocomposite might behave as independent nanostructure from its constituent ones. Since nanocomposites can behave independently of their constituent NPs/elements, by creating nanocomposites, NP versatility can be increased manifold by just manipulating existing NPs. Moreover, data in this study can furnish early mechanistic insight about the potential damage that could occur in the integrity of vascular systems.
Collapse
|
6
|
Bian Y, Wang X, Zheng Z, Ren G, Zhu H, Qiao M, Li G. Resveratrol drives cancer cell senescence via enhancing p38MAPK and DLC1 expressions. Food Funct 2022; 13:3283-3293. [PMID: 35234761 DOI: 10.1039/d1fo02365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pro-senescence therapy is a recently proposed anti-cancer strategy and has been shown to effectively inhibit cancer. Resveratrol is gaining attention for its cancer preventive and suppressive properties. The mechanisms of resveratrol in cancer suppression by inducing cancer cell senescence are unclear. Our results showed that resveratrol induced cell senescence along with an increase of SA-β-Gal activity and inhibition of colony formation in breast and lung cancer cells. The underlying mechanisms were that resveratrol induced ER-stress by increasing SIRT1 to promote p38MAPK expression and by reducing NO level to up-regulate DLC1 expression, and ER-stress further resulted in DNA damage and mitochondrial dysfunction, eventually leading to cancer cell senescence. Our findings on resveratrol's induction of cancer cell senescence via activating ER-stress through the SIRT1/p38MAPK and NO/DLC1 pathways provide a solid base for its clinical application and its preventive application as a food additive.
Collapse
Affiliation(s)
- Yan Bian
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Hongyan Zhu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Mengxue Qiao
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
7
|
Matić M, Obradović A, Milošević M, Paunović M, Ognjanović B. The effects of Interleukin-6 on viability, redox homeostasis and migration capacity of human placental cells JEG-3 in chemically induced hypoxia. KRAGUJEVAC JOURNAL OF SCIENCE 2022. [DOI: 10.5937/kgjsci2244103m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the regulation of cell growth and differentiation exerting an important role in the immune and inflammatory response. This study aimed to evaluate the effects of three increasing concentrations of IL-6 (1 pg/mL, 5 pg/mL, and 10 pg/mL) on cell viability, redox homeostasis parameters (O2∙, NO2-, glutathione) and migratory potential in human trophoblast cell line JEG-3 under chemically induced hypoxia in short-term (24 h) and long-term (72 h) exposure. The obtained results show a dose-dependent reduction of cell viability and NO levels, while the concentration of O2 ∙increased. Levels of total glutathione increased in a dose-dependent manner compared to control cells, suggesting its significant antioxidative contribution in hypoxic conditions. The migratory potential of cells was significantly elevated in the two highest applied doses implying the disturbance of cell invasive homeostasis at its pathological concentrations, which could represent a risk factor in some pregnancy disorders.
Collapse
|
8
|
Khare S, Kim LC, Lobel G, Doulias PT, Ischiropoulos H, Nissim I, Keith B, Simon MC. ASS1 and ASL suppress growth in clear cell renal cell carcinoma via altered nitrogen metabolism. Cancer Metab 2021; 9:40. [PMID: 34861885 PMCID: PMC8642968 DOI: 10.1186/s40170-021-00271-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kidney cancer is a common adult malignancy in the USA. Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, is characterized by widespread metabolic changes. Urea metabolism is one such altered pathway in ccRCC. The aim of this study was to elucidate the contributions of urea cycle enzymes, argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL) towards ccRCC progression. METHODS We employed a combination of computational, genetic, and metabolomic tools along with in vivo animal models to establish a tumor-suppressive role for ASS1 and ASL in ccRCC. RESULTS We show that the mRNA and protein expression of urea cycle enzymes ASS1 and ASL are reduced in ccRCC tumors when compared to the normal kidney. Furthermore, the loss of ASL in HK-2 cells (immortalized renal epithelial cells) promotes growth in 2D and 3D growth assays, while combined re-expression of ASS1 and ASL in ccRCC cell lines suppresses growth in 2D, 3D, and in vivo xenograft models. We establish that this suppression is dependent on their enzymatic activity. Finally, we demonstrate that conservation of cellular aspartate, regulation of nitric oxide synthesis, and pyrimidine production play pivotal roles in ASS1+ASL-mediated growth suppression in ccRCC. CONCLUSIONS ccRCC tumors downregulate the components of the urea cycle including the enzymes argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). These cytosolic enzymes lie at a critical metabolic hub in the cell and are involved in aspartate catabolism and arginine and nitric oxide biosynthesis. Loss of ASS1 and ASL helps cells redirect aspartate towards pyrimidine synthesis and support enhanced proliferation. Additionally, reduced levels of ASS1 and ASL might help regulate nitric oxide (NO) generation and mitigate its cytotoxic effects. Overall, our work adds to the understanding of urea cycle enzymes in a context-independent of ureagenesis, their role in ccRCC progression, and uncovers novel potential metabolic vulnerabilities in ccRCC.
Collapse
Affiliation(s)
- Sanika Khare
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Graham Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian Keith
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Gonçalves AC, Flores-Félix JD, Costa AR, Falcão A, Alves G, Silva LR. Hepatoprotective Effects of Sweet Cherry Extracts (cv. Saco). Foods 2021; 10:foods10112623. [PMID: 34828905 PMCID: PMC8621173 DOI: 10.3390/foods10112623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide. Among cancers, hepatocellular carcinoma is one of the most prevalent. Evidence indicates that the daily consumption of fruits and vegetables can prevent the onset of various cancers due to the presence of bioactive compounds. Sweet cherries are known for their richness in phenolics, including anthocyanins, which are the major constituents, and presumably, the key contributors to their biological activity. Therefore, the present study aimed to evaluate the effects of three different cherry fractions on human hepatocellular carcinoma (HepG2) cells viability and effectiveness to improve the redox status of these cells under oxidative damage induced by nitric oxide radicals and hydrogen peroxide. Phenolic characterization of fractions was performed by Fourier transform infrared spectroscopy. The obtained results indicated that enriched phenolic fractions of sweet cherries (cv. Saco, can impair cell viability and suppress cells growth after 72 h of exposure, promoting necrosis at the highest tested concentrations (>50 µg/mL). Additionally, fractions also showed the capacity to protect these cells against oxidative injury by capturing radicals before they can attack cells’ membrane and by modulating reactive oxygen and nitrogen species generation, as demonstrated by bioinformatic tools.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - José D. Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
| | - Ana R. Costa
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (A.R.C.); (G.A.)
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Correspondence: ; Tel.: +351-275-329-077
| |
Collapse
|
10
|
Akhtar MJ, Ahamed M, Alhadlaq H. Anti-Inflammatory CeO 2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules 2021; 26:5416. [PMID: 34500851 PMCID: PMC8434366 DOI: 10.3390/molecules26175416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•-), hydroxyl radical, etc.) by DCFH-DA and used a O2•- specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•- and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•- production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hisham Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Akhtar MJ, Ahamed M, Alhadlaq H, Alrokayan S. Pt-Coated Au Nanoparticle Toxicity Is Preferentially Triggered Via Mitochondrial Nitric Oxide/Reactive Oxygen Species in Human Liver Cancer (HepG2) Cells. ACS OMEGA 2021; 6:15431-15441. [PMID: 34151121 PMCID: PMC8210405 DOI: 10.1021/acsomega.1c01882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 05/09/2023]
Abstract
Reactive nitrogen species (RNS) that are formed from the reaction of versatile nitric oxide (NO) with reactive oxygen species (ROS) have been less explored in potential cancer therapy. This may be partly due to the fewer available agents that could induce NO in cells. Here, we report platinum-coated gold nanoparticles (Pt-coated Au NPs; 27 ± 20 nm) as a strong inducer of NO (assessed by live-cell imaging under NO-specific DAR-1 probe labeling and indirectly using a Griess reagent) in human liver carcinoma (HepG2) cells. In addition to NO, this study found a critical role of ROS from mitochondrial sources in the mechanism of toxicity caused by Pt-coated Au NPs. Cotreatment with a thiol-replenishing general antioxidant NAC (N-acetyl cysteine) led to significant amelioration of oxidative stress against NP-induced toxicity. However, NAC did not exhibit as much ameliorative potential against NP-induced oxidative stress as the superoxide radical (O2•-)-scavenging mitochondrial specific antioxidant mito-TEMPO did. The higher protective potential of mito-TEMPO in comparison to NAC reveals mitochondrial ROS as an active mediator of NP-induced toxicity in HepG2 cells. Moreover, the relatively unaltered NP-induced NO concentration under cotreatment of GSH modulators NAC and buthionine sulfoximine (BSO) suggested that NO production due to NP treatment is rather independent of the cellular thiols at least in HepG2 cells. Moreover, toxicity potentiation by exogenous H2O2 again suggested a more direct involvement of ROS/RNS in comparison to the less potentiation of toxicity due to GSH-exhausting BSO. A steeper amelioration in NP-induced NO and ROS and, consequently, cytotoxicity by mito-TEMPO in comparison to NAC reveal a pronounced role of NO and ROS via the mitochondrial pathway in the toxicity of Pt-coated Au NPs in HepG2 cells.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Maqusood Ahamed
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham Alhadlaq
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman Alrokayan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Dai Y, Zhu Y, Cheng J, Shen J, Huang H, Liu M, Chen Z, Liu Y. Nitric oxide-releasing platinum(IV) prodrug efficiently inhibits proliferation and metastasis of cancer cells. Chem Commun (Camb) 2021; 56:14051-14054. [PMID: 33103676 DOI: 10.1039/d0cc05422d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dual-functional Pt(iv) prodrug, Pt-furoxan, can release cytotoxic cisplatin and signaling molecule NO upon cellular internalization. NO modulates the cellular response towards cisplatin, leading to a synergistic anti-proliferation effect and a promising anti-metastasis effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China. and College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei, Anhui 230088, China
| | - Yang Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Juan Shen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhaolin Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Pharmacy, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
13
|
Bhartiya P, Mumtaz S, Lim JS, Kaushik N, Lamichhane P, Nguyen LN, Jang JH, Yoon SH, Choi JJ, Kaushik NK, Choi EH. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci Rep 2021; 11:8475. [PMID: 33875781 PMCID: PMC8055702 DOI: 10.1038/s41598-021-88078-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jun Sup Lim
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Neha Kaushik
- College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong, 18323, Korea
| | - Pradeep Lamichhane
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jung Hyun Jang
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sang Ho Yoon
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jin Joo Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
14
|
Xiang Q, Qiao B, Luo Y, Cao J, Fan K, Hu X, Hao L, Cao Y, Zhang Q, Wang Z. Increased photodynamic therapy sensitization in tumors using a nitric oxide-based nanoplatform with ATP-production blocking capability. Theranostics 2021; 11:1953-1969. [PMID: 33408791 PMCID: PMC7778583 DOI: 10.7150/thno.52997] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) efficacy in cancer cells is affected by sub-physiological hypoxia caused by dysregulated and “chaotic” tumor microvasculature. However, current traditional O2-replenishing strategies are undergoing their own intrinsic deficiencies. In addition, resistance mechanisms activated during PDT also lead the present situation far from satisfactory. Methods: We propose a nitric oxide (NO)-based theranostic nanoplatform by using biocompatible poly-lactic-co-glycolic acid nanoparticles (PLGA NPs) as carriers, in which the outer polymeric layer embeds chlorin e6 (Ce6) and incorporates L-Arginine (L-Arg). This nanoplatform (L-Arg@Ce6@P NPs) can reduce hyperactive O2 metabolism of tumor cells by NO-mediated mitochondrial respiration inhibition, which should raise endogenous O2 tension to counteract hypoxia. Furthermore, NO can also hinder oxidative phosphorylation (OXPHOS) which should cause intracellular adenosine triphosphate (ATP) depletion, inhibiting tumor cells proliferation and turning cells more sensitive to PDT. Results: When the L-Arg@Ce6@P NPs accumulate in solid tumors by the enhanced permeability and retention (EPR) effect, locally released L-Arg is oxidized by the abundant H2O2 to produce NO. In vitro experiments suggest that NO can retard hypoactive O2 metabolism and save intracellular O2 for enhancing PDT efficacy under NIR light irradiation. Also, lower intracellular ATP hinders proliferation of DNA, improving PDT sensitization. PDT phototherapeutic efficacy increased by combining these two complementary strategies in vitro/in vivo. Conclusion: We show that this NO-based nanoplatform can be potentially used to alleviate hypoxia and sensitize tumor cells to amplify the efficacy of phototherapy guided by photoacoustic (PA) imaging.
Collapse
|
15
|
Nitric oxide induces HepG2 cell death via extracellular signal-regulated protein kinase activation by regulating acid sphingomyelinase. Mol Biol Rep 2020; 47:8353-8359. [PMID: 33025504 DOI: 10.1007/s11033-020-05881-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/30/2020] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) plays a vital role in the occurrence and development of tumours. Acid sphingomyelinase (ASM) participates in cell apoptosis, cell proliferation, metabolism and other biological processes. However, whether ASM has an effect on NO-treated HepG2 cells remains unknown, and the role of the extracellular signal-regulated protein kinase (ERK) pathway is also unclear. In the present study, the effects of NO on cell viability and apoptosis were assayed, followed by investigating the mRNA and protein levels of ASM and ERK phosphorylation in NO-treated HepG2 cells. The results showed that diethylenetriamine/NO (DETA-NO), an NO donor, promoted HepG2 cell death and apoptosis in a concentration-dependent manner and that the mRNA and protein expression levels of ASM were significantly decreased in DETA-NO-treated HepG2 cells. Moreover, ERK phosphorylation was significantly increased in DETA-NO-treated HepG2 cells. The inhibition of ERK phosphorylation increased DETA-NO-induced cell apoptosis. In summary, DETA-NO can promote HepG2 cell death in a concentration-dependent manner by activating ERK and NO might activate ERK by regulating ASM and then inducing HepG2 cell death.
Collapse
|
16
|
Changes in Radixin Expression and Interaction with Efflux Transporters in the Liver of Adjuvant-Induced Arthritic Rats. Inflammation 2019; 43:85-94. [PMID: 31654296 DOI: 10.1007/s10753-019-01097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Scaffold proteins such as radixin help to modulate the plasma membrane localization and transport activity of the multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters in the liver. We examined changes in radixin expression and interaction with efflux transporters in adjuvant-induced arthritic (AA) rats, an animal model of rheumatoid arthritis, as well as in human liver cancer (HepG2) cells because inflammation affects drug pharmacokinetics via the efflux transporters. The expression levels of radixin and phosphorylated radixin (p-radixin) were measured 24 h after treatment with inflammatory cytokines comprising tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 or sodium nitroprusside (SNP; a nitric oxide donor). The protein levels of radixin, MRP2, and P-gp in the rat liver were next examined. We also investigated whether inflammation affected the formation of complexes between radixin and MRP2 or P-gp. The mRNA and protein levels of radixin in HepG2 cells were significantly decreased by TNF-α treatment, while minimal changes were observed after treatment with IL-1β, IL-6 or SNP. TNF-α also significantly decreased the protein levels of p-radixin, suggesting that TNF-α inhibited the activation of radixin and thereby reduced the activity of the efflux transporters. Complex formation of radixin with MRP2 and P-gp was significantly decreased in AA rats but this was reversed by prednisolone and dexamethasone treatment, indicating that decreased interactions of radixin with MRP2 and P-gp likely occur during liver inflammation. These data suggest that liver inflammation reduces radixin function by decreasing its interactions with MRP2 and P-gp.
Collapse
|
17
|
Waheed S, Cheng RY, Casablanca Y, Maxwell GL, Wink DA, Syed V. Nitric Oxide Donor DETA/NO Inhibits the Growth of Endometrial Cancer Cells by Upregulating the Expression of RASSF1 and CDKN1A. Molecules 2019; 24:molecules24203722. [PMID: 31623109 PMCID: PMC6832369 DOI: 10.3390/molecules24203722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is implicated in several biological processes, including cancer progression. At low concentrations, it promotes cell survival and tumor progression, and at high concentrations it causes apoptosis and cell death. Until now, the impact of NO donors has not been investigated on human endometrial tumors. Four cancer cell lines were exposed to different concentrations of DETA/NO for 24 to 120 h. The effects of DETA/NO on cell proliferation and invasion were determined utilizing MTS and Boyden chamber assays, respectively. The DETA/NO induced a dose and time-dependent reduction in cell viability by the activation of caspase-3 and cell cycle arrest at the G0/G1 phase that was associated with the attenuated expression of cyclin-D1 and D3. Furthermore, the reduction in the amount of CD133-expressing cancer stem-like cell subpopulation was observed following DETA/NO treatment of cells, which was associated with a decreased expression of stem cell markers and attenuation of cell invasiveness. To understand the mechanisms by which DETA/NO elicits anti-cancer effects, RNA sequencing (RNA-seq) was used to ascertain alterations in the transcriptomes of human endometrial cancer cells. RNA-seq analysis revealed that 14 of the top 21 differentially expressed genes were upregulated and seven were downregulated in endometrial cancer cells with DETA/NO. The genes that were upregulated in all four cell lines with DETA/NO were the tumor suppressors Ras association domain family 1 isoform A (RASSF1) and Cyclin-dependent kinase inhibitor 1A (CDKN1A). The expression patterns of these genes were confirmed by Western blotting. Taken together, the results provide the first evidence in support of the anti-cancer effects of DETA/NO in endometrial cancer.
Collapse
Affiliation(s)
- Sana Waheed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Robert Ys Cheng
- Molecular Mechanism Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Yovanni Casablanca
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- Department of Obstetrics & Gynecology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA 22042, USA.
| | - David A Wink
- Molecular Mechanism Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Viqar Syed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- Department of Molecular and Cell Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
18
|
Aalaei S, Mohammadzadeh M, Pazhang Y. Synergistic induction of apoptosis in a cell model of human leukemia K562 by nitroglycerine and valproic acid. EXCLI JOURNAL 2019; 18:619-630. [PMID: 31611745 PMCID: PMC6785758 DOI: 10.17179/excli2019-1581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (NG), a nitric oxide donor, and valproic acid (VPA), an inhibitor of histone deacetylases, have impressive effects on numerous cancer cell lines. This study intended to evaluate synergistic effects of NG and VPA on cell viability and apoptosis in K562 cells. K562 cells were cultured in RPMI-1640 supplemented with 10 % heat-inactivated FBS. They were treated with different doses of NG, VPA and cisplatin for 24, 48, and 72 h, and MTT assay was performed to analyze cell viability. Also, Peripheral blood mononuclear cells (PBMC) were cultured in RPMI-1640 media and incubated with NG (200 μM), VAP (100 μM), NG+VPA (150 μM) and cisplatin (8 μM) to evaluate cytotoxicity. IC50 of the drugs, when they were applied separately and in combination, were calculated using the COMPUSYN software. DNA electrophoresis, TUNEL assay, and Hoechst staining were performed to investigate apoptosis induction. RT-PCR was used for the evaluation of apoptotic genes expression. The results of the MTT assay showed that cell viability decreased at all applied doses of NG and VPA. It was noticed that the cytotoxic effects of these drugs were dose- and time-dependent. Based on the COMPUSYN output, the combination of the drugs (VPA and NG) in a certain ratio concentration synergistically decreased cell viability. Cisplatin significantly decreased cell viability of PBMCs and K562 cells. Also, the combination drug had cytotoxic effect and significantly reduced viability of K562 cells compared with PBMCs and control cells. In the target cells treated with this combination, Bax and caspase-3 expression increased but Bcl-2 expression decreased. These results suggest that NG, VPA, and their combination decreased cell viability and induced apoptosis via the intrinsic apoptotic pathway. This study suggests that this combination therapy can be considered for further evaluation as an effective chemotherapeutic strategy for patients with chronic myeloid leukemia.
Collapse
Affiliation(s)
- Shahin Aalaei
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
19
|
Zappavigna S, Vanacore D, Lama S, Potenza N, Russo A, Ferranti P, Dallio M, Federico A, Loguercio C, Sperlongano P, Caraglia M, Stiuso P. Silybin-Induced Apoptosis Occurs in Parallel to the Increase of Ceramides Synthesis and miRNAs Secretion in Human Hepatocarcinoma Cells. Int J Mol Sci 2019; 20:ijms20092190. [PMID: 31058823 PMCID: PMC6539179 DOI: 10.3390/ijms20092190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023] Open
Abstract
Silybin is a flavonolignan extracted from Silybum marianum (milk thistle) with hepatoprotective, antioxidant, and anti-inflammatory activity. Several studies have shown that silybin is highly effective to prevent and treat different types of cancer and that its antitumor mechanisms involve the arrest of the cell cycle and/or apoptosis. An MTT assay was performed to study cell viability, lipid peroxidation, extracellular NO production, and scavenger enzyme activity were studied by Thiobarbituric Acid-Reactive Species (TBARS) assay, NO assay, and MnSOD assay, respectively. Cell cycle and apoptosis analysis were performed by FACS. miRNA profiling were evaluated by real time PCR. In this study, we demonstrated that Silybin induced growth inhibition blocking the Hepg2 cells in G1 phase of cell cycle and activating the process of programmed cell death. Moreover, the antiproliferative effects of silybin were paralleled by a strong increase of the number of ceramides involved in the modulation of miRNA secretion. In particular, after treatment with silybin, miR223-3p and miR16-5p were upregulated, while miR-92-3p was downregulated (p < 0.05). In conclusion, our results suggest that silybin-Induced apoptosis occurs in parallel to the increase of ceramides synthesis and miRNAs secretion in HepG2 cells.
Collapse
Affiliation(s)
- Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Daniela Vanacore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Lama
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", viale Lincoln, 81100 Caserta, Italy.
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", viale Lincoln, 81100 Caserta, Italy.
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy.
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Pasquale Sperlongano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
20
|
Sherif IO, Al-Gayyar MMH. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance. Life Sci 2018; 198:87-93. [PMID: 29476769 DOI: 10.1016/j.lfs.2018.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
AIMS Oleuropein is considered as a new chemotherapeutic agent in human hepatocellular carcinoma (HCC) while, its exact underlying molecular mechanism still not yet explored. In addition, cisplatin is a standard anticancer drug against solid tumors with toxic side effects. Therefore, we conducted this study to assess antitumor activity of oleuropein either alone or in combination with cisplatin against HepG2, human HCC cell lines, via targeting pro-NGF/NGF signaling pathway. MAIN METHODS HepG2 cells were treated with cisplatin (20, 50, 100 μM) and oleuropein (100, 200, 300 and 400 μM) as well as some of the cells were treated with 50 μM cisplatin and different concentrations of oleuropein. Gene expressions of nerve growth factor (NGF), matrix metalloproteinase-7 (MMP-7) and caspase-3 were evaluated by real time-PCR. In addition, protein levels of NGF and pro-form of NGF (pro-NGF) were measured by ELISA while, nitric oxide (NO) content was determined colorimetrically. KEY FINDINGS Cisplatin treatment showed a significant elevation of NO content and pro-NGF protein level with a marked reduction of NGF protein level in addition to the upregulation of caspase-3 along with downregulation of MMP-7 gene expressions in a dose-dependent manner. However, the combination of 50 μM cisplatin and 200 μM oleuropein showed the most potent effect on the molecular level when compared with oleuropein or cisplatin alone. SIGNIFICANCE Our results showed for the first time that the anti-tumor activity of oleuropein against HCC could be attributed to influencing the pro-NGF/NGF balance via affecting MMP-7 activity without affecting the gene expression of NGF. Concurrent treatment with both oleuropein and cisplatin could lead to more effective chemotherapeutic combination against HCC.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
21
|
Ferraz LS, Watashi CM, Colturato-Kido C, Pelegrino MT, Paredes-Gamero EJ, Weller RB, Seabra AB, Rodrigues T. Antitumor Potential of S-Nitrosothiol-Containing Polymeric Nanoparticles against Melanoma. Mol Pharm 2018; 15:1160-1168. [DOI: 10.1021/acs.molpharmaceut.7b01001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Letícia S. Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Carolina M. Watashi
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Carina Colturato-Kido
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Milena T. Pelegrino
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Edgar J. Paredes-Gamero
- Interdisciplinary Center for Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), 08780-911 Mogi das Cruzes, São Paulo, Brazil
| | - Richard B. Weller
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, U.K
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| |
Collapse
|
22
|
Chen LD, Liu ZH, Zhang LF, Yao JN, Wang CF. Sanggenon C induces apoptosis of colon cancer cells via inhibition of NO production, iNOS expression and ROS activation of the mitochondrial pathway. Oncol Rep 2017; 38:2123-2131. [PMID: 28849234 PMCID: PMC5652955 DOI: 10.3892/or.2017.5912] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Sanggenon C is a well-known, major active agent of the flavonoid derivative of benzopyrone with valuable biological properties, including anticancer, anti-inflammatory, antimicrobial, antiviral, antithrombotic, and immune-modulatory activities. In this study, we investigated the molecular mechanisms by which sanggenon C mediated the induction of cell death in colorectal cancer cells (CRC). Treatment of colorectal cancer cells (LoVo, HT-29 and SW480) with sanggenon C (0, 5, 10, 20, 40 and 80 µM) resulted in inhibited proliferation of colon cancer cells. In addition, Sanggenon C (10, 20, 40 µM) induces apoptosis of HT-29 colon cancer cells as well as the increased ROS generation. Furthermore, treatment with sanggenon C increased the level of intracellular Ca2+ and ATP, while inhibited the nitric oxide production via inhibiting inducible nitric oxide synthase expression. This resulted in the activation of mitochondrial apoptosis pathway as evidenced by the decrease in Bcl-2 protein expression. Consistently, the anti-growth and pro-apoptosis effects of sanggenon C on xenograft colon tumor were further confirmed in vivo. Collectively, our results demonstrated sanggenon C induced apoptosis of colon cancer cells by increased reactive oxygen species generation and decreased nitric oxide production, which is associated with inhibition of inducible nitric oxide synthase expression and activation of mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Li-Dong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhi-Hui Liu
- Department of Gastroenterology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan 454001, P.R. China
| | - Lian-Feng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ning Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chun-Feng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Xiao R, Li S, Cao Q, Wang X, Yan Q, Tu X, Zhu Y, Zhu F. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase. Virol Sin 2017; 32:216-225. [PMID: 28656540 DOI: 10.1007/s12250-017-3997-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 01/21/2023] Open
Abstract
Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran Xiao
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shan Li
- Department of Integrated Medicine, Dongfeng Hospital, Hubei University of Medicine, Wuhan, 442000, China
| | - Qian Cao
- Department of Neurology Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiuling Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiujin Yan
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoning Tu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China. .,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| |
Collapse
|
24
|
Chen J, Wang T, Xu S, Lin A, Yao H, Xie W, Zhu Z, Xu J. Design, synthesis and biological evaluation of novel nitric oxide-donating protoberberine derivatives as antitumor agents. Eur J Med Chem 2017; 132:173-183. [DOI: 10.1016/j.ejmech.2017.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/17/2023]
|
25
|
Fuseler JW, Valarmathi MT. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration. Front Cell Dev Biol 2016; 4:133. [PMID: 27933292 PMCID: PMC5122209 DOI: 10.3389/fcell.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina Columbia, SC, USA
| | - Mani T Valarmathi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|