1
|
Ma L, Gao Y, Yang G, Zhao L, Zhao Z, Zhao Y, Zhang Y, Li S, Li S. Notoginsenoside R1 Ameliorate High-Fat-Diet and Vitamin D3-Induced Atherosclerosis via Alleviating Inflammatory Response, Inhibiting Endothelial Dysfunction, and Regulating Gut Microbiota. Drug Des Devel Ther 2024; 18:1821-1832. [PMID: 38845851 PMCID: PMC11155380 DOI: 10.2147/dddt.s451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Aim Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1β levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1β inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.
Collapse
Affiliation(s)
- Liying Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yuhang Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shenhui Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| |
Collapse
|
2
|
Sun J, Fan J, Yang F, Su X, Li X, Tian L, Liu C, Xing Y. Effect and possible mechanisms of saponins in Chinese herbal medicine exerts for the treatment of myocardial ischemia-reperfusion injury in experimental animal: a systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1147740. [PMID: 37564906 PMCID: PMC10410164 DOI: 10.3389/fcvm.2023.1147740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Preventing ischemia-reperfusion injury is the main direction of myocardial infarction treatment in the convalescent stage. Some studies have suggested that saponins in Traditional Chinese medicine (TCM) preparations can protect the myocardium by various mechanisms. Our meta-analysis aims to evaluate the efficacy of TCM saponins in treating myocardial ischemia-reperfusion injury (MIRI) and to summarize the potential molecular mechanisms further. Methods We conducted a literature search in six electronic databases [Web of Science, PubMed, Embase, Cochrane Library, Sinomed, China National Knowledge Infrastructure (CNKI)] until October 2022. Results Seventeen eligible studies included 386 animals (254 received saponins and 132 received vehicles). The random effect model is used to calculate the combined effect. The effect size is expressed as the weighted average difference (WMD) and 95% confidence interval (CI). Compared with placebo, saponins preconditioning reduced infarct size after MIRI significantly (WMD: -3.60,95% CI: -4.45 to -2.74, P < 0.01, I2: 84.7%, P < 0.001), and significantly increased EF (WMD: 3.119, 95% CI: 2.165 to 4.082, P < 0.01, I2: 82.9%, P < 0.0 L) and FS (WMD: 3.157, 95% CI: 2.218 to 4.097, P < 0.001, I2: 81.3%, P < 0.001). Discussion The results show that the pre-administration of saponins from TCM has a significant protective effect on MIRI in preclinical studies, which provides an application prospect for developing anti-MIRI drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Jiahao Sun
- Yanqing Hospital of Beijing Chinese Medicine Hospital, Beijing, China
| | - Jiarong Fan
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinye Li
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Tian
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zeng JJ, Shi HQ, Ren FF, Zhao XS, Chen QY, Wang DJ, Wu LP, Chu MP, Lai TF, Li L. Notoginsenoside R1 protects against myocardial ischemia/reperfusion injury in mice via suppressing TAK1-JNK/p38 signaling. Acta Pharmacol Sin 2023; 44:1366-1379. [PMID: 36721009 PMCID: PMC10310839 DOI: 10.1038/s41401-023-01057-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/14/2023] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that notoginsenoside R1 (NG-R1), a novel saponin isolated from Panax notoginseng, protects kidney, intestine, lung, brain and heart from ischemia-reperfusion injury. In this study we investigated the cardioprotective mechanisms of NG-R1 in myocardial ischemia/reperfusion (MI/R) injury in vivo and in vitro. MI/R injury was induced in mice by occluding the left anterior descending coronary artery for 30 min followed by 4 h reperfusion. The mice were treated with NG-R1 (25 mg/kg, i.p.) every 2 h for 3 times starting 30 min prior to ischemic surgery. We showed that NG-R1 administration significantly decreased the myocardial infarction area, alleviated myocardial cell damage and improved cardiac function in MI/R mice. In murine neonatal cardiomyocytes (CMs) subjected to hypoxia/reoxygenation (H/R) in vitro, pretreatment with NG-R1 (25 μM) significantly inhibited apoptosis. We revealed that NG-R1 suppressed the phosphorylation of transforming growth factor β-activated protein kinase 1 (TAK1), JNK and p38 in vivo and in vitro. Pretreatment with JNK agonist anisomycin or p38 agonist P79350 partially abolished the protective effects of NG-R1 in vivo and in vitro. Knockdown of TAK1 greatly ameliorated H/R-induced apoptosis of CMs, and NG-R1 pretreatment did not provide further protection in TAK1-silenced CMs under H/R injury. Overexpression of TAK1 abolished the anti-apoptotic effect of NG-R1 and diminished the inhibition of NG-R1 on JNK/p38 signaling in MI/R mice as well as in H/R-treated CMs. Collectively, NG-R1 alleviates MI/R injury by suppressing the activity of TAK1, subsequently inhibiting JNK/p38 signaling and attenuating cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Jing-Jing Zeng
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Cardiology, Ningbo No. 2 Hospital, Ningbo, 315000, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Han-Qing Shi
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiao-Shan Zhao
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiao-Ying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dong-Juan Wang
- Department of Cardiology, Ningbo No. 2 Hospital, Ningbo, 315000, China
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mao-Ping Chu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
4
|
Zhu T, Wan Q. Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury. Chin J Traumatol 2023; 26:20-26. [PMID: 35922249 PMCID: PMC9912185 DOI: 10.1016/j.cjtee.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Panax notoginseng is an ancient Chinese medicinal plant that has great clinical value in regulating cardiovascular disease in China. As a single component of panax notoginosides, notoginsenoside R1 (NGR1) belongs to the panaxatriol group. Many reports have demonstrated that NGR1 exerts multiple pharmacological effects in ischemic stroke, myocardial infarction, acute renal injury, and intestinal injury. Here, we outline the available reports on the pharmacological effects of NGR1 in ischemia-reperfusion (I/R) injury. We also discuss the chemistry, composition and molecular mechanism underlying the anti-I/R injury effects of NGR1. NGR1 had significant effects on reducing cerebral infarct size and neurological deficits in cerebral I/R injury, ameliorating the impaired mitochondrial morphology in myocardial I/R injury, decreasing kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in renal I/R injury and attenuating jejunal mucosal epithelium injury in intestinal I/R injury. The various organ anti-I/R injury effects of NGR1 are mainly through the suppression of oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and promotion of angiogenesis and neurogenesis. These findings provide a reference basis for future research of NGR1 on I/R injury.
Collapse
Affiliation(s)
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
5
|
Xu J, Hu Z, He H, Ou X, Yang Y, Xiao C, Yang C, Li L, Jiang W, Zhou T. Transcriptome analysis reveals that jasmonic acid biosynthesis and signaling is associated with the biosynthesis of asperosaponin VI in Dipsacus asperoides. FRONTIERS IN PLANT SCIENCE 2022; 13:1022075. [PMID: 36798802 PMCID: PMC9928152 DOI: 10.3389/fpls.2022.1022075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
Dipsacus asperoides is a perennial herb, the roots of which are abundant in asperosaponin VI, which has important medicinal value. However, the molecular mechanism underlying the biosynthesis of asperosaponin VI in D. asperoides remains unclear. In present study, a comprehensive investigation of asperosaponin VI biosynthesis was conducted at the levels of metabolite and transcript during root development. The content of asperosaponin VI was significantly accumulated in two-leaf stage roots, and the spatial distribution of asperosaponin VI was localized in the xylem. The concentration of asperosaponin VI gradually increased in the root with the development process. Transcriptome analysis revealed 3916 unique differentially expressed genes (DEGs) including 146 transcription factors (TFs) during root development in D. asperoides. In addition, α-linolenic acid metabolism, jasmonic acid (JA) biosynthesis, JA signal transduction, sesquiterpenoid and triterpenoid biosynthesis, and terpenoid backbone biosynthesis were prominently enriched. Furthermore, the concentration of JA gradually increased, and genes involved in α-linolenic acid metabolism, JA biosynthesis, and triterpenoid biosynthesis were up-regulated during root development. Moreover, the concentration of asperosaponin VI was increased following methyl jasmonate (MeJA) treatment by activating the expression of genes in the triterpenoid biosynthesis pathway, including acetyl-CoA acetyltransferase (DaAACT), 3-hydroxy-3-methylglutaryl coenzyme A synthase (DaHMGCS), 3-hydroxy-3-methylglutaryl coenzyme-A reductase (DaHMGCR). We speculate that JA biosynthesis and signaling regulates the expression of triterpenoid biosynthetic genes and facilitate the biosynthesis of asperosaponin VI. The results suggest a regulatory network wherein triterpenoids, JA, and TFs co-modulate the biosynthesis of asperosaponin VI in D. asperoides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Zhou
- Resource Institute for Chinese Medicine and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
6
|
Hu K, Li C, Yu T, Guo H, Sun H, Mao S, Zhou Z, Jin W, Liu K, Xie L, Wang G, Liang Y. Global analysis of qualitative and quantitative metabolism of Notoginsenoside R1 in rat liver-brain-gut axis based on LC-IT-TOF/MS combing mMDF strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154261. [PMID: 35793598 DOI: 10.1016/j.phymed.2022.154261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The metabolism study of active components for traditional Chinese medicine (TCM) in target organs is conducive to clarify the authentic active ingredients. Notoginsenoside R1 (NG-R1), one of the bioactive components of Panax notoginsenoside (PNS), is commonly acknowledged as the characteristic marker of PNS. However, the metabolism of NG-R1 in target organs has not been clarified yet due to the lack of robust technique and approach. PURPOSE The present study aimed to develop a reliable and efficient strategy and technology for revealing the qualitative and quantitative metabolism of active components of TCMs in target organs, and to clarify the biotransformation of NG-R1 in liver-brain-intestinal axis. METHODS The metabolic transformation of NG-R1 in the brain gut axis was investigated in the in vitro incubation system of fresh rat brain, liver homogenate, and intestinal flora. To quickly lock the target metabolites, we set the mass defect filter (MDF) in different ranges to screen metabolites with different molecular weight (MW). This strategy was defined as multi-stage MDF (mMDF). In addition, we performed relative quantitative analysis on all metabolites according to the peak area acquired by LC-IT-TOF/MS to overcome the challenge that metabolites are difficult to be quantified due to the lack of standards. RESULTS When MDF was set at 0.50 to 0.65 to screen metabolites with MW of 900 to 1200 Da, 6 novel metabolites were quickly found, and then identified as glucuronic acid binding, oxidation, dehydrogenation, methylation and hydrogenation products according to their LC and MS characteristics. When setting MDF at 0.42 - 0.52, 6 metabolites with MW of 600 to 900 Da were effectively screened and identified as Rg1, NG-R2, Rh1, Rg1+CH2+2H and Rg1+CH2. To screen the metabolites with MW of 300 to 600 Da, MDF was set at 0.25 - 0.42, and 4 novel metabolites were screened rapidly. The results of quantitative metabolism suggested that intestinal flora was the main metabolic site of NG-R1 in rat, and more than 60% of NG-R1 was converted to Rg1 by deglycosylation in the intestinal flora. CONCLUSION The mMDF strategy can significantly improve the research efficiency of qualitative metabolism of saponins. Although NG-R1 could be transformed into a variety of metabolites in rat liver and brain homogenate, it still existed mainly in prototype form. In the rat flora, NG-R1 mainly existed in the form of deglycosylated metabolite Rg1.
Collapse
Affiliation(s)
- Kangrui Hu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Changjian Li
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Huimin Guo
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Hong Sun
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Shuying Mao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Zhihao Zhou
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Wei Jin
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Notoginsenoside R1 Promotes Migration, Adhesin, Spreading, and Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113403. [PMID: 35684342 PMCID: PMC9182421 DOI: 10.3390/molecules27113403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
Abstract
Cellular activities, such as attachment, spreading, proliferation, migration, and differentiation are indispensable for the success of bone tissue engineering. Mesenchymal stromal cells (MSCs) are the key precursor cells to regenerate bone. Bioactive compounds from natural products had shown bone regenerative potential. Notoginsenoside R1 (NGR1) is a primary bioactive natural compound that regulates various biological activities, including cardiovascular protection, neuro-protection, and anti-cancer effects. However, the effect of NGR1 on migration, adhesion, spreading, and osteogenic differentiation of MSCs required for bone tissue engineering application has not been tested properly. In this study, we aimed to analyze the effect of NGR1 on the cellular activities of MSCs. Since human adipose-derived stromal cells (hASCs) are commonly used MSCs for bone tissue engineering, we used hASCs as a model of MSCs. The optimal concentration of 0.05 μg/mL NGR1 was biocompatible and promoted migration and osteogenic differentiation of hASCs. Pro-angiogenic factor VEGF expression was upregulated in NGR1-treated hASCs. NGR1 enhanced the adhesion and spreading of hASCs on the bio-inert glass surface. NGR1 robustly promoted hASCs adhesion and survival in 3D-printed TCP scaffold both in vitro and in vivo. NGR1 mitigated LPS-induced expression of inflammatory markers IL-1β, IL-6, and TNF-α in hASCs as well as inhibited the RANKL/OPG expression ratio. In conclusion, the biocompatible NGR1 promoted the migration, adhesion, spreading, osteogenic differentiation, and anti-inflammatory properties of hASCs.
Collapse
|
8
|
Arafa ESA, Refaey MS, Abd El-Ghafar OAM, Hassanein EHM, Sayed AM. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition. Heliyon 2021; 7:e08354. [PMID: 34825082 PMCID: PMC8605069 DOI: 10.1016/j.heliyon.2021.e08354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinases (p38 MAPK) is a 38kD polypeptide recognized as the target for many potential anti-inflammatory agents. Accumulating evidence indicates that p38 MAPK could perform many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Ginseng is an exceptionally valued medicinal plant of the family Araliaceae (Panax genus). Recently, several studies targeted the therapeutic effects of purified individual ginsenoside, the most significant active ingredient of ginseng, and studied its particular molecular mechanism(s) of action rather than whole-plant extracts. Interestingly, several ginsenosides: ginsenosides compound K, F1, Rb1, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, Rg5, Rh1, Rh2, Ro, notoginsenoside R1, and protopanaxadiol have shown to possess great therapeutic potentials mediated by their ability to downregulate p38 MAPK signaling in different cell lines and experimental animal models. Our review compiles the research findings of various ginsenosides as potent anti-inflammatory agents, highlighting the crucial role of p38 MAPK suppression in their pharmacological actions. In addition, in silico studies were conducted to explore the probable binding of these ginsenosides to p38 MAPK. The results obtained proposed p38 MAPK involvement in the beneficial pharmacological activities of ginsenosides in different ailments. p38 MAPK plays many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Several ginsenosides showed to possess great therapeutic potentials mediated by its ability to downregulate p38 MAPK signaling. in silico studies were conducted to explore the binding of these ginsenosides to p38 MAPK and evidenced the promising their inhibitory effect.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates.,Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya, 32958, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Protection of CAPE-pNO 2 Against Chronic Myocardial Ischemia by the TGF-Β1/Galectin-3 Pathway In Vivo and In Vitro. Inflammation 2021; 45:1039-1058. [PMID: 34817763 DOI: 10.1007/s10753-021-01600-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Although it is known that caffeic acid phenethyl ester (CAPE) and its derivatives could ameliorate acute myocardial injury, their effects on chronic myocardial ischemia (CMI) were not reported. This study aimed to investigate the potential effect of caffeic acid p-nitro phenethyl ester (CAPE-pNO2, a derivative of CAPE) on CMI and underlying mechanisms. SD rats were subjected to high-fat-cholesterol-diet (HFCD) and vitamin D3, and the H9c2 cells were treated with LPS to establish CMI model, followed by the respective treatment with saline, CAPE, or CAPE-pNO2. In vivo, CAPE-pNO2 could reduce serum lipid levels and improve impaired cardiac function and morphological changes. Data of related assays indicated that CAPE-pNO2 downregulated the expression of transforming growth factor-β1 (TGF-β1) and galectin-3 (Gal-3). Besides, CAPE-pNO2 decreased collagen deposition, the number of apoptotic cardiomyocytes, and some related downstream proteins of Gal-3 in the CMI rats. Interestingly, the effects of CAPE-pNO2 on TGF-β1, Gal-3, and other proteins expressed in the lung were consistent with that in the heart. In vitro, CAPE-pNO2 could attenuate the fibrosis, apoptosis, and inflammation by activating TGF-β1/Gal-3 pathway in LPS-induced H9c2 cell. However, CAPE-pNO2-mediated cardioprotection can be eliminated when treated with modified citrus pectin (MCP, an inhibitor of Gal-3). And in comparison, CAPE-pNO2 presented stronger effects than CAPE. This study indicates that CAPE-pNO2 may ameliorate CMI by suppressing fibrosis, inflammation, and apoptosis via the TGF-β1/Gal-3 pathway in vivo and in vitro.
Collapse
|
10
|
Cao Y, Li Q, Zhou A, Ke Z, Chen S, Li M, Gong Z, Wang Z, Wu X. Notoginsenoside R1 Reverses Abnormal Autophagy in Hippocampal Neurons of Mice With Sleep Deprivation Through Melatonin Receptor 1A. Front Pharmacol 2021; 12:719313. [PMID: 34603030 PMCID: PMC8481657 DOI: 10.3389/fphar.2021.719313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) may cause serious neural injury in the central nervous system, leading to impairment of learning and memory. Melatonin receptor 1A (MTNR1A) plays an important role in the sleep regulation upon activation by melatonin. The present study aimed to investigate if notoginsenoside R1 (NGR1), an active compound isolated from Panax notoginseng, could alleviate neural injury, thus improve impaired learning and memory of SD mice, as well as to explore its underlying action mechanism through modulating MTNR1A. Our results showed that NGR1 administration improved the impaired learning and memory of SD mice. NGR1 prevented the morphological damage and the accumulation of autophagosomes in the hippocampus of SD mice. At the molecular level, NGR1 reversed the expressions of proteins involved in autophagy and apoptosis, such as beclin-1, LC3B, p62, Bcl-2, Bax, and cleaved-caspase 3. Furthermore, the effect of NGR1 was found to be closely related with the MTNR1A-mediated PI3K/Akt/mTOR signaling pathway. On HT-22 cells induced by autophagy inducer rapamycin, NGR1 markedly attenuated excessive autophagy and apoptosis, and the alleviative effect was abolished by the MTNR1A inhibitor. Taken together, NGR1 was shown to alleviate the impaired learning and memory of SD mice, and its function might be exerted through reduction of excessive autophagy and apoptosis of hippocampal neurons by regulating the MTNR1A-mediated PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yin Cao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengqi Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Mingrui Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sun X, Song Y, Xie Y, Han J, Chen F, Sun Y, Sui B, Jiang D. Shenlijia Attenuates Doxorubicin-Induced Chronic Heart Failure by Inhibiting Cardiac Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6659676. [PMID: 34326887 PMCID: PMC8310442 DOI: 10.1155/2021/6659676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Application of the anticancer drug doxorubicin (DOX) is restricted due to its adverse, cardiotoxic side effects, which ultimately result in heart failure. Moreover, there are a limited number of chemical agents for the clinical prevention of DOX-induced cardiotoxicity. Based on the theories of traditional Chinese medicine (TCM) on chronic heart failure (CHF), Shenlijia (SLJ), a new TCM compound, has been developed to fulfill multiple functions, including improving cardiac function and inhibiting cardiac fibrosis. In the present study, the protective effects and molecular mechanisms of SLJ on DOX-induced CHF rats were investigated. The CHF rat model was induced by intraperitoneal injection of DOX for six weeks with the cumulative dose of 15 mg/kg. All rats were then randomly divided into the control, CHF, CHF + SLJ (3.0 g/kg per day), and CHF + captopril (3.8 mg/kg per day) groups and treated for further four weeks. Echocardiography and the assessment of hemodynamic parameters were performed to evaluate heart function. A protein chip was applied to identify proteins with diagnostic values that were differentially expressed following SLJ treatment. The data from these investigations showed that SLJ treatment significantly improved cardiac function by increasing the left ventricular ejection fraction, improving the hemodynamic index, and inhibiting interstitial fibrosis. Protein chip analysis revealed that SLJ upregulated MCP-1, MDC, neuropilin-2, TGF-β3, thrombospondin, TIE-2, EG-VEGF/PK1, and TIMP-1/2/3 expressions and downregulated that of MMP-13. In addition, immunohistochemistry and western blot results further confirmed that SLJ promoted TIMP-1/2/3 and inhibited MMP-13 expression. The results of the present study suggest that SLJ was effective against DOX-induced CHF rats and is related to the improvement of heart function and ultrastructure and the inhibition of myocardial fibrosis.
Collapse
Affiliation(s)
- Xutao Sun
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Xie
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jieru Han
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fei Chen
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Sun
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Zhan Q, Wu Y, Liu L. Effects of notoginsenoside R1 on attenuating depressive behavior induced by chronic stress in rats through induction of PI3K/AKT/NF-κB pathway. Drug Dev Res 2021; 83:97-104. [PMID: 34173680 DOI: 10.1002/ddr.21847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023]
Abstract
Chronic unpredictable mild stress (CUMS) can cause a series of depressive symptoms in depression patients. Recently, notoginsenoside R1 (NGR1) has been reported to play crucial roles in the anti-inflammatory, antioxidant, and anti-apoptotic. However, the role and mechanisms of NGR1 in improving symptoms of depressive behavior remain unknown. Evaluating and identifying its value and exploring the mechanisms of NGR1 on CUMS-induced depressive behavior were the aims of this study. Here, rats were separated into five different groups and treated with or without different concentrations of the NGR1. Then, the body weight, sucrose preference rate, immobility time, crossing number, rearing number, and grooming number were determined to evaluate the effect of NGR1 on improving the depressive behavior of CUMS rats. Subsequently, the morphology of hippocampal neurons and protein expression of brain-derived neurotrophic factor in each group were examined by hematoxylin and eosin staining and western blot to show the neuroprotective effects of NGR1. Furthermore, the mRNA and protein expression of TNF-α, IL-6, and IL-1β were also detected by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay to verify the anti-inflammatory effects of NGR1 on CUMS rats. In addition, the cell apoptosis-related proteins were examined to reveal that NGR1 can inhibit cell apoptosis in CUMS rats. Moreover, it was confirmed that NGR1 attenuated the symptoms of depressive behavior by mediated PI3K/Akt/NF-κB pathway. Together, this study shows that NGR1 improves depressive behavior induced by chronic stress in rats through activation of PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Qiongqiong Zhan
- Department of Clinical Psychology, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, No.2, Wutaishan Road, Yangzhou, Jiangsu Province, 225003, China
| | - Yanfeng Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, No.121, Jiangjiayuan, Nanjing, Jiangsu Province, 210029, China
| | - Lin Liu
- Department of Gynaecology and Obstetrics, Luohe Medical College, Luohe, Henan Province, 462005, China
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Ran Y, Guo J, Cui H, Liu S. Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity. Transl Neurosci 2020; 11:215-226. [PMID: 33335762 PMCID: PMC7711878 DOI: 10.1515/tnsci-2020-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Sevoflurane, a volatile anesthetic, is known to induce widespread neuronal degeneration and apoptosis. Recently, the stress-inducible protein sestrin 2 and adenosine monophosphate-activated protein kinase (AMPK) have been found to regulate the levels of intracellular reactive oxygen species (ROS) and suppress oxidative stress. Notoginsenoside R1 (NGR1), a saponin isolated from Panax notoginseng, has been shown to exert neuroprotective effects. The effects of NGR1 against neurotoxicity induced by sevoflurane were assessed. Methods Sprague-Dawley rat pups on postnatal day 7 (PD7) were exposed to sevoflurane (3%) anesthesia for 6 h. NGR1 at doses of 12.5, 25, or 50 mg/kg body weight was orally administered to pups from PD2 to PD7. Results Pretreatment with NGR1 attenuated sevoflurane-induced generation of ROS and reduced apoptotic cell counts. Western blotting revealed decreased cleaved caspase 3 and Bad and Bax pro-apoptotic protein expression. NGR1 substantially upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with increased heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 levels, suggesting Nrf2 signaling activation. Enhanced sestrin-2 and phosphorylated AMPK expression were noticed following NGR1 pretreatment. Conclusion This study revealed the neuroprotective effects of NGR1 through effective suppression of apoptosis and ROS via regulation of apoptotic proteins and activation of Nrf2/HO-1 and sestrin 2/AMPK signaling cascades.
Collapse
Affiliation(s)
- Yibing Zhang
- Comprehensive Teaching and Research Office of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Yong Zhao
- GLP Laboratory, Institute of Chinese Materia Medica, China Academy of Traditional Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yongwang Ran
- Department of Radiology, Qianjiang Central Hospital of Chongqing, Chongqing, 409099, People's Republic of China
| | - Jianyou Guo
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Haifeng Cui
- GLP Laboratory, Institute of Chinese Materia Medica, China Academy of Traditional Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Sha Liu
- Comprehensive Teaching and Research Office of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, People's Republic of China
| |
Collapse
|
14
|
Zeng J, Jin Q, Ruan Y, Sun C, Xu G, Chu M, Ji K, Wu L, Li L. Inhibition of TGFβ-activated protein kinase 1 ameliorates myocardial ischaemia/reperfusion injury via endoplasmic reticulum stress suppression. J Cell Mol Med 2020; 24:6846-6859. [PMID: 32378287 PMCID: PMC7299680 DOI: 10.1111/jcmm.15340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β-activated protein kinase 1 (TAK1) involves in various biological responses and is a key regulator of cell death. However, the role of TAK1 on acute myocardial ischaemia/reperfusion (MI/R) injury is unknown. We observed that TAK1 activation increased significantly after MI/R and hypoxia/reoxygenation (H/R), and we hypothesized that TAK1 has an important role in MI/R injury. Mice (TAK1 inhibiting by 5Z-7-oxozeaenol or silencing by AAV9 vector) were exposed to MI/R injury. Primary cardiomyocytes (TAK1 silencing by siRNA; and overexpressing TAK1 by adenovirus vector) were used to induce H/R injury model in vitro. Inhibition of TAK1 significantly decreased MI/R-induced myocardial infarction area, reduced cell death and improved cardiac function. Mechanistically, TAK1 silencing suppressed MI/R-induced myocardial oxidative stress and attenuated endoplasmic reticulum (ER) stress both in vitro and in vivo. In addition, the inhibition of ROS by NAC partially reversed the damage of TAK1 in vitro. Our study presents the first direct evidence that inhibition of TAK1 mitigated MI/R injury, and TAK1 mediated ROS/ER stress/apoptosis signal pathway is important for the pathogenesis of MI/R injury.
Collapse
Affiliation(s)
- Jingjing Zeng
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qike Jin
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongxue Ruan
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guangyu Xu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lianpin Wu
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lei Li
- Institute of Cardiovascular Development and Translational MedicineThe Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
15
|
Liu H, Yang J, Yang W, Hu S, Wu Y, Zhao B, Hu H, Du S. Focus on Notoginsenoside R1 in Metabolism and Prevention Against Human Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:551-565. [PMID: 32103897 PMCID: PMC7012233 DOI: 10.2147/dddt.s240511] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Notoginsenoside (NG)-R1 is one of the main bioactive compounds from Panax notoginseng (PN) root, which is well known in the prescription for mediating the micro-circulatory hemostasis in human. In this article, we mainly discuss NG-R1 in metabolism and the biological activities, including cardiovascular protection, neuro-protection, anti-diabetes, liver protection, gastrointestinal protection, lung protection, bone metabolism regulation, renal protection, and anti-cancer. The metabolites produced by deglycosylation of NG-R1 exhibit higher permeability and bioavailability. It has been extensively verified that NG-R1 may ameliorate ischemia-reperfusion (IR)-induced injury in cardiovascular and neuronal systems mainly by upregulating the activity of estrogen receptor α-dependent phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor erythroid-2-related factor 2 (NRF2) pathways and downregulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. However, no specific targets for NG-R1 have been identified. Expectedly, NG-R1 has been used as a main bioactive compound in many Traditional Chinese Medicines clinically, such as Xuesaitong, Naodesheng, XueShuanTong, ShenMai, and QSYQ. These suggest that NG-R1 exhibits a significant potency in drug development.
Collapse
Affiliation(s)
- Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Jianqiong Yang
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People's Republic of China
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Bo Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
16
|
Wang M, Ma J. Effect of NGR1 on the Atopic Dermatitis Model and its Mechanisms. Open Med (Wars) 2019; 14:847-853. [PMID: 31737789 PMCID: PMC6843485 DOI: 10.1515/med-2019-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a highly pruritic chronic inflammatory skin disease. Notoginsenoside R1 (NGR1), a unique ingredient of P. notoginseng which is a well-known medicinal herb for its long history of use in traditional Chinese medicine, has been identified to have various biologically active properties that include anti-inflammatory effects. However, the effects of NGR1 on AD remain unclear. Therefore, this study aimed to investigate the effect and mechanism of NGR1 on the in vitro cell model of AD induced by LPS stimulation. RAW264.7 cells were stimulated with 1 μg/ml LPS to establish the in vitro cell inflammation model of AD. RAW264.7 cells were treated with various concentrations of NGR1 (0.1, 1, and 10 μM); then, an MTT assay was performed to determine the cell viability. An ELISA assay detected the levels of pro-inflammatory cytokines (interleukin-1β, IL-1β; interleukin-6, IL-6; tumor necrosis factor-α, TNF-α). Additionally, NO production was measured using a nitrate/nitrite assay kit. Results indicated that LPS induced increases in the levels of TNFα, IL-1β, IL-6, and NO production was significantly reduced by NGR1 treatment in a dose-dependent manner. Further, NGR1 treatment inhibited the activation of the NF-κB pathway, and the NLRP3 inflammasome in LPS stimulated RAW264.7 macrophages. The study data indicated that NGR1 might relieve atopic dermatitis via inhibiting inflammation through suppressing the NF-κB signaling pathway and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mingmei Wang
- Department of Pharmacy, Fourth Medical Center of PLA General Hospita, 51#Fucheng Road, Beijing 100037, China
| | - Jianli Ma
- Department of Pharmacy, Fourth Medical Center of PLA General Hospita, 51#Fucheng Road, Beijing 100037, China
| |
Collapse
|
17
|
Han JY, Li Q, Pan CS, Sun K, Fan JY. Effects and mechanisms of QiShenYiQi pills and major ingredients on myocardial microcirculatory disturbance, cardiac injury and fibrosis induced by ischemia-reperfusion. Pharmacol Res 2019; 147:104386. [DOI: 10.1016/j.phrs.2019.104386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
18
|
Comparative Analysis of Panax ginseng Berries from Seven Cultivars Using UPLC-QTOF/MS and NMR-Based Metabolic Profiling. Biomolecules 2019; 9:biom9090424. [PMID: 31466413 PMCID: PMC6770912 DOI: 10.3390/biom9090424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The commercial use of Panax ginseng berries is increasing as P. ginseng berries are known to contain large amounts of ginsenosides, and many pharmacological activities have been reported for the various ginsenosides. For the proper use of P. ginseng berries, it is necessary to study efficient and accurate quality control and the profiling of the overall composition of each cultivar. Ginseng berry samples from seven cultivars (Eumseung, Chung-buk Province, Republic of Korea) were analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling of the ginsenosides, and high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy for profiling of the primary metabolites. Comparing twenty-six ginsenoside profiles between the variant representatives and between the violet-stem variant, Kumpoong and Sunwon were classified. In the case of primary metabolites, the cultivars Kumpoong and Gopoong were classified. As a result of correlation analyses of the primary and secondary metabolites, in the Gopoong cultivar, the metabolism was found to lean toward energy metabolism rather than ginsenoside synthesis, and accumulation of osmolytes was low. The Gopoong cultivar had higher levels of most of the amino acids, such as arginine, phenylalanine, isoleucine, threonine, and valine, and it contained the highest level of choline and the lowest level of myo-inositol. Except for these, there were no significant differences of primary metabolites. In the Kumpoong cultivar, the protopanaxatriol (PPT)-type ginsenosides, ginsenoside Re and ginsenoside Rg2, were much lower than in the other cultivars, while the other PPT-type ginsenosides were inversely found in much higher amounts than in other cultivars. The Sunwon cultivar showed that variations of PPT-type ginsenosides were significantly different between samples. However, the median values of PPT-type ginsenosides of Sunwon showed similar levels to those of Kumpoong. The difference in primary metabolites used for metabolism for survival was found to be small in our results. Our data demonstrated the characteristics of each cultivar using profiling data of the primary and secondary metabolites, especially for Gopoong, Kumpoong, and Sunwon. These profiling data provided important information for further research and commercial use.
Collapse
|
19
|
Chen Z, Luo T, Zhang L, Zhou Z, Huang Y, Lu L, Yang Z, Wang L, Xian S. A simplified herbal formula for the treatment of heart failure: Efficacy, bioactive ingredients, and mechanisms. Pharmacol Res 2019; 147:104251. [PMID: 31233804 DOI: 10.1016/j.phrs.2019.104251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Heart failure (HF) is a complex pathology for which single-agent therapy cannot provide comprehensive efficacy. Therefore, effective combination therapies for HF are increasingly emphasized. Multiple-component drugs derived from Chinese herbal formulae provide efficacy and safety when administered to patients with HF. Nuanxinkang (NXK) is a simplified Chinese herbal formula which has been widely applied in HF for decades. It exhibits comprehensive cardiac protective effects in HF patients as an adjuvant therapy, including improving heart function and quality-of-life, reducing inflammation, and regulating neurohormones. Nevertheless, the bioactive ingredients and mechanisms of action of NXK are unknown, which hinders its further application. Here, we examined the therapeutic efficacy of NXK in a mouse model of HF. Using transcriptome analysis and drug similarity analysis we found that NXK inhibits apoptosis and inflammation, while improving cardiac contraction and reversing myocardial fibrosis. In addition, we detected 21 bioactive species in NXK using UHPLC-MS analysis. Based on these data, we performed network pharmacology analysis to investigate ingredient-target-pathway interactions. We further confirmed 13 genes as potential targets, and assessed the effects of NXK on the AKT to validate the anti-apoptotic role of NXK both in vivo and in vitro. Thus, our work has identified a simplified herbal formula with efficacy against HF by exploring its constituents and mechanism of action, providing evidence for an innovative treatment strategy and novel therapeutic targets for HF.
Collapse
Affiliation(s)
- Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Tong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zheng Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| |
Collapse
|
20
|
Zhong H, Wu H, Bai H, Wang M, Wen J, Gong J, Miao M, Yuan F. Panax notoginseng saponins promote liver regeneration through activation of the PI3K/AKT/mTOR cell proliferation pathway and upregulation of the AKT/Bad cell survival pathway in mice. Altern Ther Health Med 2019; 19:122. [PMID: 31182089 PMCID: PMC6558887 DOI: 10.1186/s12906-019-2536-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Backgroud The regenerative capacity of the liver is crucial for the host to survive after serious hepatic injuries, tumor resection, or living donor liver transplantation. Panax notoginseng saponins (PNS) have been reported to exert protective effects during organ injuries. The present study aimed to evaluate the effect of PNS on liver regeneration(LR) and on injuries induced by partial hepatectomy (PH). Methods We performed 70% partial PH on C57BL/6 J mice treated with or without PNS. LR was estimated by liver weight/body weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were analyzed by Western blot. Results Different concentrations of PNS promoted hepatocyte proliferation in vitro. Mice in the PNS group showed higher liver/body weight ratios at 2 d and 7 d (P < 0.05) after PH and lower levels of serum ALT and AST (P < 0.05) compared to those of mice in the normal control (NC) group. Histological analysis showed that the expression of proliferating cell nuclear antigen(PCNA) at 2 d and 7 d after PH was significantly higher in the PNS group than in the NC group (P < 0.05). Mechanistically, the AKT/mTOR cell proliferation pathway and AKT/Bad cell survival pathway were activated by PNS, which accelerated hepatocyte proliferation and inhibited apoptosis (P < 0.05). Conclusions PNS promoted liver regeneration through activation of PI3K/AKT/mTOR and upregulated the AKT/Bad cell pathways in mice.
Collapse
|
21
|
Notoginsenoside R1 protects human renal proximal tubular epithelial cells from lipopolysaccharide-stimulated inflammatory damage by up-regulation of miR-26a. Chem Biol Interact 2019; 308:364-371. [PMID: 31158334 DOI: 10.1016/j.cbi.2019.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Notoginsenoside R1 (NGR1) is the main saponin isolated from the roots of Panax notoginseng (Burk.) F.H. Chen (Araliaceae). This study explored the protective effects of NGR1 on human renal proximal tubular epithelial cell inflammatory damage caused by lipopolysaccharide (LPS), as well as possible internal molecular mechanisms. METHODS Cell viability and apoptosis were assessed using CCK-8 assay and Annexin V-FITC/PI Apoptosis Detection kit, respectively. Reactive oxygen species (ROS) level was tested using DCFH-DA staining. qRT-PCR was used to measure microRNA-26a (miR-26a), interleukin 1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) expressions. miRNA transfection was conducted to knock down miR-26a. The protein expression levels of key molecules related to cell apoptosis, inflammatory response and nuclear factor kappa B (NF-κB) pathway were detected using western blotting. RESULTS LPS stimulation caused human renal proximal tubular epithelial cell viability reduction, apoptosis and inflammatory cytokines expression. NGR1 treatment protected human renal proximal tubular epithelial cells from LPS-caused viability reduction, ROS level elevation, apoptosis and inflammatory cytokines expression. Mechanistically, NGR1 enhanced miR-26a expression in LPS-treated human renal proximal tubular epithelial cells. Knockdown of miR-26a reversed the protective effect of NGR1 on LPS-treated cells. Besides, NGR1 inactivated NF-κB pathway in LPS-treated human renal proximal tubular epithelial cells via up-regulating miR-26a. CONCLUSION NGR1 protected human renal proximal tubular epithelial cells from LPS-caused inflammatory damage at least partially via up-regulating miR-26a and then inactivating NF-κB pathway.
Collapse
|
22
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
23
|
Zheng QN, Wei XH, Pan CS, Li Q, Liu YY, Fan JY, Han JY. QiShenYiQi Pills ® ameliorates ischemia/reperfusion-induced myocardial fibrosis involving RP S19-mediated TGFβ1/Smads signaling pathway. Pharmacol Res 2019; 146:104272. [PMID: 31085230 DOI: 10.1016/j.phrs.2019.104272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
QiShenYiQi Pills (QSYQ) is a compound Chinese medicine widely used in China for treatment of cardiovascular disease. However, limited data are available regarding the anti-fibrotic role of QSYQ after ischemia/reperfusion (I/R) injury. This study aimed to investigate the effect of post-treatment with QSYQ on myocardial fibrosis after I/R-induced myocardium injury, and the role of different compounds of QSYQ, focusing especially on the involvement of chemokine ribosomal protein S19 (RP S19) dimer and monocyte migration. Male Sprague-Dawley rats were subjected to left anterior descending coronary artery occlusion for 30 min followed by reperfusion with or without administration of QSYQ (0.6, 1.2, or 1.8 g/kg) once daily by gavage for 6 days. Post-treatment with QSYQ diminished I/R-induced infarct size, alleviated myocardium injury, attenuated myocardial fibrosis after 6 days of reperfusion, and restored heart function and myocardial blood flow after I/R. In addition, the drug significantly inhibited monocyte infiltration and macrophage polarization towards M2, which was attributable to chemokine RP S19 dimer. Moreover, Western blots revealed that QSYQ blocked I/R-induced increase in TGFβ1 and TGFβRⅡ and reversed its relevant gene expression, such as Smad3,4,6,7, and inhibited the increase of MMP 2,9 expression. As the major components of QSYQ, astragaloside IV (AsIV), 3,4-dihydroxy-phenyl lactic acid (DLA), and notoginsenoside R1 (R1) were assessed as to the contribution of each of them to the expression of the proteins concerned. The results showed that the effect of AsIV was similar to QSYQ, while DLA and R1 only partly simulated the effect of QSYQ. The results provide evidence for the potential role of QSYQ in treating myocardial fibrosis following I/R injury. This effect may be associated with QSYQ's inhibition effect on monocyte chemotaxis and TGFβ1/Smads signaling pathway with different component targeting distinct link (s) of the signaling.
Collapse
Affiliation(s)
- Qian-Ning Zheng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Xiao-Hong Wei
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 100191, China; Beijing Laboratory of Integrative Microangiopathy, Beijing, 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, 100191, China.
| |
Collapse
|
24
|
Zou W, Niu C, Fu Z, Gong C. PNS-R1 inhibits Dex-induced bronchial epithelial cells apoptosis in asthma through mitochondrial apoptotic pathway. Cell Biosci 2019; 9:18. [PMID: 30891181 PMCID: PMC6388479 DOI: 10.1186/s13578-019-0279-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Dexamethasone (Dex) are widely used for the treatment of asthma. However, they may cause apoptosis of bronchial epithelial cells and delay the recovery of asthma. Therefore, it is an urgent problem to find effective drugs to reduce this side effects. Panax notoginseng saponins R1 (PNS-R1) is known to exhibit anti-oxidative and anti-apoptotic properties in many diseases. We aim to investigate whether PNS-R1 can reduce Dex-induced apoptosis in bronchial epithelial cells. In this study, the anti-apoptotic effects of PNS-R1 were investigated by conducting in vitro and in vivo. Annexin V-FITC/PI staining flow cytometry analysis and TUNEL assay were conducted to detect apoptotic cells. Mitochondrial membrane potential was detected by JC-1 analysis. Western blotting and immunohistochemical analysis were conducted to measure caspase3, Bcl-2, Bax, Cyt-c, Apaf-1, cleaved-caspase3 and cleaved-caspase9 levels in lung tissues and 16HBE cells. Our findings demonstrated that Dex could induce apoptosis of bronchial epithelial cells and upregulate caspase3 expression of lung tissues. Western blot showed that Dex increased Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and decreased Bcl-2 expression. PNS-R1 could suppress Dex-induced apoptosis of bronchial epithelial cells by inhibiting Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and upregulating Bcl-2 expression. Flow cytometry analysis showed PNS-R1 alleviated JC-1 positive cells induced by Dex in 16HBE cells. These results showed that PNS-R1 alleviated Dex-induced apoptosis in bronchial epithelial cells by inhibition of mitochondrial apoptosis pathway. Furthermore, our findings highlighted the potential use of PNS-R1 as an adjuvant drug to treat asthma.
Collapse
Affiliation(s)
- Wenjing Zou
- 1Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
| | - Chao Niu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Zhou Fu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Caihui Gong
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| |
Collapse
|
25
|
Luo C, Sun Z, Li Z, Zheng L, Zhu X. Notoginsenoside R1 (NGR1) Attenuates Chronic Atrophic Gastritis in Rats. Med Sci Monit 2019; 25:1177-1186. [PMID: 30757999 PMCID: PMC6381808 DOI: 10.12659/msm.911512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background This study investigated the effect and mechanism of notoginsenoside R1 (NGR1) on chronic atrophic gastritis (CAG) in a rat model. Material/Methods To perform our investigation, a rat model of CAG was established, and then rats were treated with various doses of NGR1. After treatment, hematoxylin-eosin (HE) staining was used for histopathological observation and further scoring. Enzyme-linked immunosorbent assay (ELISA) was used to determine the contents of gastrointestinal hormones, inflammatory factors, gastric mucosal destruction factors, and gastric mucosal-protective factors. Gene and protein expressions were measured using quantitative real-time PCR and Western blot assay, respectively. Results Results indicated that NGR1 relieved rat CAG. NGR1 treatment significantly increased the levels of gastrin (GAS) and somatostatin (SS) and reduced motilin (MTL) in the serum of CAG rats. The serum levels of interleukin (IL)-1β and IL-6 were significantly reduced by NGR1 treatment in CAG rats in a dose-dependent manner. Additionally, the increased levels of prostaglandin (PG)E2, nitric oxide synthase (NOS), and endothelin (ET) in CAG rats were significantly decreased by NGR1 administration. Moreover, the decreased level of secretory IgA (sIgA) and glutathione (GSH) in rats caused by MNNG was notably increased by NGR1 treatment. No significant changes were found in glutathione disulfide (GSSG) secretion. Finally, we found that the increased Bcl-2 expression and reduced Bax expression in the stomach tissues of rats caused by MNNG were eliminated by NGR1 treatment. Conclusions NGR1 exerts a protective effect on CAG, and it is a multi-target, multi-linked, comprehensive process.
Collapse
Affiliation(s)
- Chao Luo
- Department of Spleen Surgery and Gastroenterology, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| | - Zhiguang Sun
- School Offices,, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Zhen Li
- Department of Spleen Surgery and Gastroenterology, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| | - Liang Zheng
- Department of Spleen Surgery and Gastroenterology, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| | - Xiaolin Zhu
- External Liaison Office, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
26
|
Liu Z, Wang H, Hou G, Cao H, Zhao Y, Yang B. Notoginsenoside R1 protects oxygen and glucose deprivation‐induced injury by upregulation of miR‐21 in cardiomyocytes. J Cell Biochem 2018; 120:9181-9192. [PMID: 30552708 DOI: 10.1002/jcb.28194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zengjia Liu
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University Jining Shandong China
- Forensic Science Center of Jining Medical University Jining Shandong China
| | - Haiyang Wang
- Department of Cardiology Qingdao Municipal Hospital Qingdao Shandong China
| | - Guoliang Hou
- Department of Cardiovascular Medicine Tengzhou Central People's Hospital Tengzhou Shandong China
| | - Honglei Cao
- Department of Cardiology Jining No. 1 People's Hospital Jining Shandong China
| | - Yan Zhao
- Department of Pain Treatment Jining No. 1 People's Hospital Jining Shandong China
| | - Baofa Yang
- Department of Cardiology Jining No. 1 People's Hospital Jining Shandong China
| |
Collapse
|
27
|
Fan Q, Zhang Y, Hou X, Li Z, Zhang K, Shao Q, Feng N. Improved oral bioavailability of notoginsenoside R1 with sodium glycocholate-mediated liposomes: Preparation by supercritical fluid technology and evaluation in vitro and in vivo. Int J Pharm 2018; 552:360-370. [PMID: 30292894 DOI: 10.1016/j.ijpharm.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023]
Abstract
The chief objective of this research was to appraise liposomes embodying a bile salt, sodium glycocholate (SGC), as oral nanoscale drug delivery system to strengthen the bioavailability of a water-soluble and weakly penetrable pharmaceutical, notoginsenoside R1 (NGR1). NGR1-loaded liposomes were prepared with the improved supercritical reverse evaporation (ISCRPE) method and the preparation conditions were optimized with response surface methodology (RSM). The mean encapsulation efficiency (EE), particle size, and polydispersity index (PDI) of the optimized liposomal formulation (NGR1@Liposomes) were 49.49%, 308.3 nm, and 0.229, respectively. SGC-mediated liposomes (NGR1@SGC-Liposomes) were formulated based on the optimal preparation conditions and the mean EE, particle size, and PDI were 41.51%, 200.1 nm, and 0.130, respectively. The in vitro Caco-2 cellular uptake of fluorescent marker was increased by loading into NGR1@SGC-Liposomes as compared with the conventional liposomes. Furthermore, the intestinal permeability as well as the intestinal absorption of NGR1 were both significantly improved with NGR1@SGC-Liposomes as the nanovesicles. The in vivo pharmacokinetic study results showed that AUC0-t value of NGR1@SGC-Liposomes and NGR1@Liposomes was 2.68- and 2.03-fold higher than that of NGR1 aqueous solution, respectively. The AUC0-t of the NGR1@SGC-Liposomes group was significantly higher than that of NGR1@Liposomes. Thus, ISCRPE method is a feasible method for the preparation of water-soluble drug-loaded liposomes and bile salt-mediated liposomes may enhance the oral absorption of water-soluble and poorly permeable drugs.
Collapse
Affiliation(s)
- Qiangyuan Fan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qun Shao
- Open Innovation, University of Bradford, West Yorkshire BD7 1DP, UK
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
28
|
Tu L, Wang Y, Chen D, Xiang P, Shen J, Li Y, Wang S. Protective Effects of Notoginsenoside R1 via Regulation of the PI3K-Akt-mTOR/JNK Pathway in Neonatal Cerebral Hypoxic-Ischemic Brain Injury. Neurochem Res 2018; 43:1210-1226. [PMID: 29696512 PMCID: PMC5996020 DOI: 10.1007/s11064-018-2538-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/22/2018] [Accepted: 04/21/2018] [Indexed: 01/21/2023]
Abstract
Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Studies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 24–48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking test (5 weeks after HI) and Morris water maze test 5–6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P (PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting ER in neonatal hypoxic–ischemic injury.
Collapse
Affiliation(s)
- Liu Tu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Xiang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
29
|
Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. Molecules 2018; 23:molecules23040940. [PMID: 29673237 PMCID: PMC6017639 DOI: 10.3390/molecules23040940] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022] Open
Abstract
Panax notoginseng (Burk) F. H. Chen, as traditional Chinese medicine, has a long history of high clinical value, such as anti-inflammatory, anti-oxidation, inhibition of platelet aggregation, regulation of blood glucose and blood pressure, inhibition of neuronal apoptosis, and neuronal protection, and its main ingredients are Panax notoginseng saponins (PNS). Currently, Panax notoginseng (Burk) F. H. Chen may improve mental function, have anti-insomnia and anti-depression effects, alleviate anxiety, and decrease neural network excitation. However, the underlying effects and the mechanisms of Panax notoginseng (Burk) F. H. Chen and its containing chemical constituents (PNS) on these depression-related or anxiety-related diseases has not been completely established. This review summarized the antidepressant or anxiolytic effects and mechanisms of PNS and analyzed network targets of antidepressant or anxiolytic actions with network pharmacology tools to provide directions and references for further pharmacological studies and new ideas for clinical treatment of nervous system diseases and drug studies and development. The review showed PNS and its components may exert these effects through regulating neurotransmitter mechanism (5-HT, DA, NE), modulation of the gamma-amino butyric acid (GABA) neurotransmission, glutamatergic system, hypo-thalamus-pituitary-adrenal (HPA) axis, brain-derived neurotrophic factor (BDNF), and its intracellular signaling pathways in the central nervous system; and produce neuronal protection by anti-inflammatory, anti-oxidation, or inhibition of neuronal apoptosis, or platelet aggregation and its intracellular signaling pathways. Network target analysis indicated PNS and its components also may have anti-inflammatory and anti-apoptotic effects, which leads to the preservation of brain nerves, and regulate the activity and secretion of nerve cells, exerting anti-depression and anxiolytic effects, which may provide new directions for further in-depth researches of related mechanisms.
Collapse
|
30
|
Li G, Xing X, Luo Y, Deng X, Lu S, Tang S, Sun G, Sun X. Notoginsenoside R1 prevents H9c2 cardiomyocytes apoptosis against hypoxia/reoxygenation via the ERs/PI3K/Akt pathway. RSC Adv 2018; 8:13871-13878. [PMID: 35539324 PMCID: PMC9079795 DOI: 10.1039/c8ra02554a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Notoginsenoside R1 (NGR1) is separate from Panax notoginsenosides (PNS), and plays a role similar to phytoestrogen in preventing and treating cardiovascular diseases. However, the protective mechanism of NGR1 in the myocardial ischemia/reperfusion injury via the estrogen receptor (ER) pathway remains unclear, which hinder its application. This study aimed to study the preventive mechanisms of NGR1 in the apoptosis of H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R). NGR1 did not affect the expression of ERα and ERβ proteins in normal H9c2 cardiomyocytes. However, NGR1 could upregulate the ERα and G protein-coupled receptor 30 (GPR30) proteins in H9c2 cardiomyocytes after H/R without affecting ERβ levels. Moreover, it significantly affected the expression levels of PI3K and its downstream apoptosis proteins such as Bcl-2 Associated X Protein (Bax), B cell lymphoma/lewkmia-2 (Bcl-2), caspase-3, and so forth. Whereas, after adding the PI3K protein antagonist, the modulatory expression levels of PI3K and its downstream apoptosis proteins were remarkably abolished. After adding ERα and GPR30 antagonists, NGR1 had no significant effect on the expression of PI3K and its downstream Akt protein in the model group. The data of flow cytometry showed that after adding the ERα, GPR30 and PI3K antagonists, the apoptotic rate of cardiomyocytes had no significant changes compared with the model group. This study demonstrated that NGR1 protected H9c2 cardiomyocytes from the injury after H/R by affecting ERα and GPR30 to regulate the expression levels of PI3K and its downstream apoptosis proteins. Notoginsenoside R1 (NGR1) is separate from Panax notoginsenosides (PNS), and plays a role similar to phytoestrogen in preventing and treating cardiovascular diseases.![]()
Collapse
Affiliation(s)
- Guang Li
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Yunnan Branch
| | - Xiaoyan Xing
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Yun Luo
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Xuehong Deng
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Shan Lu
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Shimin Tang
- Changchun University of Chinese Medicine
- Changchun
- China
| | - Guibo Sun
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| | - Xiaobo Sun
- The Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Beijing 100093
- China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine
| |
Collapse
|
31
|
Sheng Y, Xu C, Zeng W. TAB3 defect induces augmented cardioprotection loss from ischemic injury. Cell Biol Int 2017; 41:787-797. [PMID: 28462515 DOI: 10.1002/cbin.10781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Sheng
- Department of Cardiology; Tongde Hospital of Zhejiang Province; 234 Gucui Road Hangzhou Zhejiang China
| | - Changfu Xu
- Department of Cardiology; Tongde Hospital of Zhejiang Province; 234 Gucui Road Hangzhou Zhejiang China
| | - Wenping Zeng
- Department of Cardiology; Zhejiang Hospital; No.12 Lingyin Road Hangzhou Zhejiang China
| |
Collapse
|
32
|
Tsai MY, Hu WL, Lin CC, Lee YC, Chen SY, Hung YC, Chen YH. Prescription pattern of Chinese herbal products for heart failure in Taiwan: A population-based study. Int J Cardiol 2016; 228:90-96. [PMID: 27863367 DOI: 10.1016/j.ijcard.2016.11.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Certain Chinese herbal products (CHPs) may protect against the progression of heart failure (HF). However, there is a lack of research regarding the use of CHPs in patients with HF. The aims of this study were to analyze CHPs usage patterns in patients with HF and to identify the frequency and combination of CHPs most commonly used for HF. METHODS This retrospective, nationwide, population-based cohort study was conducted using a randomly sampled cohort of one million patients selected from the National Health Insurance Research Database (NHIRD) for the years 2000-2010 in Taiwan. CHP use and the top ten most frequently prescribed formulae and single herbs for treating HF were assessed, including total formulae number and average and frequency of prescriptions. Demographic characteristics, including sex and age at diagnosis of HF, were examined, together with existing comorbidities. RESULTS The cohort included 19,988 newly diagnosed AD patients, who were given CHP treatment for HF between 2000 and 2010. Among them, female patients (53.3%) and those over 65years old (63.9%) were more likely to use CM. After adjusting for demographic factors, HF patients suffering from coronary artery disease (CAD) were more likely to seek traditional Chinese medicine (TCM) treatment than those with non-TCM users (57.6% vs. 52.6%). Zhi-Gan-Cao-Tang (4.07%) and Danshen (5.13%) were the most frequent formula CHP and single CHP prescribed by TCM practitioners for treating HF, respectively. CONCLUSION Most people with HF who consumed CHPs used CHPs to supplement Yang-Qi, nourish the Ying-blood, and strengthen the heart spirit as complementary medicines to relieve HF-related symptoms, in addition to using standard anti-HF treatments. Further large-scale, randomized clinical trials are warranted in order to determine the effectiveness and safety of these herbal medicines.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; Healthcare Service Research Center (HSRC), Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chiao Lee
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Yu Chen
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan.
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|