1
|
Yang Y, Song L, Yin Y, Gao Y, Wang Y, Wu S, Wang J, Pan Y, Sui X, Jiang L, Zhang Y, Yu G. Clinical significance of Cyclin D1 by complete quantification detection in mantle cell lymphoma: positive indicator in prognosis. Diagn Pathol 2024; 19:149. [PMID: 39574103 PMCID: PMC11580504 DOI: 10.1186/s13000-024-01577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
OBJECTIVES The positive expression of Cyclin D1 in immunohistochemical (IHC) staining serves as the cornerstone for diagnosing mantle cell lymphoma (MCL). However, existing literature does not conclusively establish whether the expression ratio and staining intensity significantly influence diagnostic outcomes or patient prognosis. In this retrospective study, the correlation between comprehensive Cyclin D1 quantification and the prognosis of MCL patients was studied. METHODS The Cyclin D1 protein level was assessed in 120 formalin-fixed paraffin-embedded samples from MCL patients using the quantitative dot blot (QDB) analysis technique. R language software was employed for statistical analysis to determine the optimal threshold with statistical significance. Additionally, Kaplan-Meier method was utilized to evaluate the relationship between the absolute level of Cyclin D1 protein and overall survival (OS) of patients. Furthermore, the Chi-square test was applied to analyze the causes of single and multiple fractures, with a significance level of p < 0.05. Finally, the Log-rank test was used to compare two survival curves, where a significance level of p < 0.05 was considered statistically significant. RESULTS At the optimized cutoff of 0.46 nmol/g, univariate analysis revealed a positive correlation between Cyclin D1 protein level and patient survival (OS). Specifically, in the subgroup with complete quantification of Cyclin D1 higher than the cutoff, the 5-year OS was 18%, whereas in the subgroup with complete quantification of Cyclin D1 lower than the cutoff, the 5-year OS was 4.8% (Log-rank test, P = 0.017). This indicates that patients with Cyclin D1 levels above the cutoff had significantly better overall survival compared to those below the cutoff. Additionally, in the Pearson distribution test, Ki-67 emerged as an independent prognostic factor for the complete quantification of Cyclin D1. Notably, Cyclin D1 complete quantification results remained unaffected by factors such as gender, age, LDH (Lactate Dehydrogenase) level, Ann Arbor stage(AAS), Ki-67, IPI(International prognostic index), MIPI(Mantle International prognostic index), and MIPI-c (MIPI Combined with Ki-67 Proliferation Index Chi-square test, p > 0.05). CONCLUSIONS Comprehensive Cyclin D1 quantification, especially above a threshold, significantly correlates with better overall survival in MCL. This highlights its prognostic importance in MCL management. Full quantification of CyclinD1 aids MCL prognosis, while QDB technology for biomarker quantification supports precise clinical prognostic stratification.
Collapse
Affiliation(s)
- Yan Yang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Liling Song
- The 2nd Medical College of Binzhou Medical University, 346 Guanhai Road, Yantai, China
| | - Ying Yin
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yuan Gao
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yunjun Wang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Shishou Wu
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Jun Wang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yu Pan
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Xiaolong Sui
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Lei Jiang
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China
| | - Yunyun Zhang
- Yantai Quanticision Diagnostics, Inc, No. 39, Keji Avenue, Yantai, 264003, China.
| | - Guohua Yu
- Departments of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, China.
| |
Collapse
|
2
|
Zhao Z, Wang X, Ding Y, Cao X, Zhang X. SMC4, a novel tumor prognostic marker and potential tumor therapeutic target. Front Oncol 2023; 13:1117642. [PMID: 37007153 PMCID: PMC10064883 DOI: 10.3389/fonc.2023.1117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
The structural maintenance of chromosome 4 (SMC4) is a member of the ATPase family of chromosomes. The most widely reported function of SMC4, as well as the remaining subunits of whole condensin complexes, is compression and dissociation of sister chromatids, DNA damage repair, DNA recombination, and pervasive transcription of the genome. Studies have also shown that SMC4 plays an exceedingly essential role in the division cycle of embryonic cells, such as RNA splicing, DNA metabolic process, cell adhesion, and extracellular matrix. On the other hand, SMC4 is also a positive regulator of the inflammatory innate immune response, while excessive innate immune responses not only disrupt immune homeostasis and may lead to autoimmune diseases, but even cancer. To further understand the expression and prognostic value of SMC4 in tumors, we provide an in-depth review of the literature and several bioinformatic databases, for example, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), The Human Protein Atlas and Kaplan Meier plotter tools, illustrating that SMC4 plays a vital role in the occurrence and development of tumors, and high expression of SMC4 seems to consistently predict worse overall survival. In conclusion, we present this review which introduces the structure, biological function of SMC4, and its correlation with the tumor in detail; it might provide new insight into a novel tumor prognostic marker and potential tumor therapeutic target.
Collapse
Affiliation(s)
- Zonglei Zhao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xixiu Wang
- Department of Cardiovascular Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yan Ding
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xuefeng Cao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
- *Correspondence: Xuefeng Cao,
| | - Xingyuan Zhang
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
3
|
Unraveling the therapeutic potential of GANT61/Dactolisib combination as a novel prostate cancer modality. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:143. [PMID: 35834137 PMCID: PMC9283339 DOI: 10.1007/s12032-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Aberrant activation of several signaling pathways has been implicated in prostate cancer (PCa) progression to castrate-resistant prostate cancer (CRPC). Phosphoinositide-3-kinase/Protein Kinase B/mechanistic Target of Rapamycin (PI3K/AKT/mTOR) and Hedgehog/GLI (Hh/GLI) pathways are major participants in progression to CRPC. In this sense, the current work aims to assess the potential antitumor effects resulting from co-targeting the aforementioned pathways in PC3 cells with Dactolisib as a dual PI3K/mTOR inhibitor and GANT61 as a GLI1 antagonist. Three replica of PC3 cells were assigned for four treatment groups; vehicle control, Dactolisib-treated, GANT61-treated, and combination-treated groups. GLI1 gene expression was determined by quantitative real-time PCR while active caspase-3 was determined colorimetrically. P-AKT, p70 ribosomal s6 protein kinase 1 (pS6K1), cyclin D1, vascular endothelial growth factor 1 (VEGF1), and Microtubule-associated proteins 1A/1B light chain 3 (LC3) protein levels were determined by ELISA technique. GLI1 gene expression was down-regulated as a result of Dactolisib, GANT61, and their combination. Additionally, both drugs significantly reduced p-AKT, pS6K1, cyclin D1, and VEGF1 protein levels. Dactolisib elevated LC3 protein levels and GANT61 augmented Dactolisib effect on LC3. Moreover, only Dactolisib/GANT61combination significantly increased active caspase-3 level. To sum up, Dactolisib/GANT61 combination was shown to be promising in PCa treatment. Further in-vitro and in-vivo studies are warranted to support our findings.
Collapse
|
4
|
Suppressive GLI2 fragment enhances liver metastasis in colorectal cancer. Oncotarget 2022; 13:122-135. [PMID: 35047127 PMCID: PMC8763325 DOI: 10.18632/oncotarget.28170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Linoleic acid (LA) has been shown to cause inflammation and promote development of colorectal cancer (CRC). Moreover, many literatures show that LA is associated with cancer metastasis. Metastatic cancer cells have high stemness, suggesting that LA might affect the stemness of cancer cells. In this study, we examined the effect of LA on the hedgehog system, which affects cancer stemness. In CT26 cells, LA treatment induced the expression of sonic hedgehog (Shh); the signal transduction factor, and glioma-associated oncogene homolog (Gli)2, whereas the expression of SRY-box transcription factor (Sox)17 was suppressed. Furthermore, LA reduced GLI2 ubiquitination, resulting in an increase in the N-terminal fragment of GLI2, known as suppressive GLI2, produced by cleavage of GLI2. LA-induced cleaved GLI2 was also detected in Colo320 and HT29 human CRC cells. Knocking down Gli2 abrogated the LA-mediated suppression of Sox17 expression. These results suggest that LA promotes tumor cell stemness by increasing of suppressive GLI2 fragments via GLI2 modification. In mouse liver metastasis models, LA enhanced metastasis with production of the suppressive GLI2 fragments in CT26 and HT29 cells, whereas knockdown of GLI2 abrogated LA-induced metastatic activity. In human CRCs, the cases with liver metastasis showed the suppressive GLI2 fragments. This study provides mechanistic insights into LA-induced stemness in colon cancer cells. This finding suggests that dietary intake of LA might increase the stemness of cancer cells and enhance metastatic activity of the cancer.
Collapse
|
5
|
Tian H, He Z. Anti-hepatoma effect of taccalonolide A through suppression of sonic hedgehog pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:939-947. [PMID: 32496832 DOI: 10.1080/21691401.2020.1773484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Taccalonolide A has been reported to have anti-tumour efficiency. However, the underlying mechanism for taccalonolides A therapy of hepatocellular carcinoma (HCC) is still obscure. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Apoptosis was determined by flow cytometry. Protein expression of B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), sonic hedgehog (Shh), Smoothened (Smo) and Gli family zinc finger 1 (Gli1) was analyzed by western blot. The expression of Shh, Smo and Gli1 mRNA was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that taccalonolide A inhibited cell proliferation, induced apoptosis and cell cycle arrest at the G0/G1 phase, and improved the cytotoxicity of sorafenib in HCC cells. The expressions of Shh, Smo, Gli1 mRNA and protein were decreased after taccalonolide A treatment. More importantly, activation of the Shh pathway attenuated taccalonolide A-induced inhibition on cell viability and promotion on apoptosis and cell cycle arrest in HCC. Also, activation of the Shh pathway neutralized the effect of taccalonolide A on sorafenib cytotoxicity in HCC. We clarified that taccalonolide A suppressed cell viability facilitated apoptosis, and improved the cytotoxicity of sorafenib in HCC by inhibition of the activation of the Shh pathway, providing alternative treatments for HCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Infectious Disease, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zhenkun He
- Department of Infectious Disease, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Huang X, Sun L, Wen S, Deng D, Wan F, He X, Tian L, Liang L, Wei C, Gao K, Fu Q, Li Y, Jiang J, Zhai R, He M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci 2020; 111:3338-3349. [PMID: 32506598 PMCID: PMC7469810 DOI: 10.1111/cas.14516] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomal long noncoding RNA (lncRNA) has been found to be associated with the development of cancers. However, the expression characteristics and the biological roles of exosomal lncRNAs in hepatocellular carcinoma (HCC) remain unknown. Here, by RNA sequencing, we found 9440 mRNAs and 8572 lncRNAs were differentially expressed (DE-) in plasma exosomes between HCC patients and healthy controls. Exosomal DE-lncRNAs displayed higher expression levels and tissue specificity, lower expression variability and splicing efficiency than DE-mRNAs. Six candidate DE-lncRNAs (fold change 6 or more, P ≤ .01) were high in HCC cells and cell exosomes. The knockdown of these candidate DE-lncRNAs significantly affected the migration, proliferation, and apoptosis in HCC cells. In particular, a novel DE-lncRNA, RP11-85G21.1 (lnc85), promoted HCC cellular proliferation and migration by targeted binding and regulating of miR-324-5p. More importantly, the level of serum lnc85 was highly expressed in both Alpha-fetoprotein (AFP)-positive and AFP-negative HCC patients and allowed distinguishing AFP-negative HCC from healthy control and liver cirrhosis (area under the receiver operating characteristic curve, 0.869; sensitivity, 80.0%; specificity, 76.5%) with high accuracy. Our finding offers a new insight into the association between the dysregulation of exosomal lncRNA and HCC, suggesting that lnc85 could be a potential biomarker of HCC.
Collapse
Affiliation(s)
- Xuejing Huang
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Liyuan Sun
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Sha Wen
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Deli Deng
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fengjie Wan
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiao He
- School of Public HealthGuilin Medical UniversityGuilinChina
| | - Li Tian
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Lifang Liang
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Chunmeng Wei
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Kaiping Gao
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐ BioresourcesNanningChina
| | - Yasi Li
- School of Global Public HealthNew York UniversityNew YorkNYUSA
| | - Jianning Jiang
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rihong Zhai
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
- Carson Cancer CenterShenzhen UniversityShenzhenChina
| | - Min He
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
- Key Laboratory of High‐Incidence Tumor Prevention and Treatment (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
7
|
Kumar V, Dong Y, Kumar V, Almawash S, Mahato RI. The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis. Am J Cancer Res 2019; 9:7537-7555. [PMID: 31695785 PMCID: PMC6831471 DOI: 10.7150/thno.38913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Hedgehog (Hh) pathway plays an essential role in liver fibrosis by promoting the proliferation of hepatic stellate cells (HSCs) by enhancing their metabolism via yes-associated protein 1 (YAP1). Despite the presence of several inhibitors, Hh signaling cannot be controlled exclusively due to their poor efficacy and the lack of a suitable delivery system to the injury site. Therefore, it is rationale to develop new potent Hh inhibitors and suitable delivery carriers. Methods: Based on the structure and activity of Hh inhibitor GDC-0449, we replaced its sulfonamide group with two methylpyridine-2yl at amide nitrogen to synthesize MDB5. We compared the Hh pathway inhibition and anti-fibrotic effect of MDB5 with GDC-0449 in vitro. Next, we developed MDB5 loaded micelles using our methoxy poly(ethylene glycol)-blockpoly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol (PEG-PCC-g-DC) copolymer and characterized for physicochemical properties. We evaluated the therapeutic efficacy of MDB5 loaded micelles in common bile duct ligation (CBDL) induced liver fibrosis, mouse model. We also determined the intrahepatic distribution of fluorescently labeled micelles after MDB5 treatment. Results: Our results show that MDB5 was more potent in inhibiting Hh pathway components and HSC proliferation in vitro. We successfully developed MDB5 loaded micelles with particle size of 40 ± 10 nm and drug loading up to 10% w/w. MDB5 loaded micelles at the dose of 10 mg/kg were well tolerated by mice, without visible sign of toxicity. The serum enzyme activities elevated by CBDL was significantly decreased by MDB5 loaded micelles compared to GDC-0449 loaded micelles. MDB5 loaded micelles further decreased collagen deposition, HSC activation, and Hh activity and its target genes in the liver. MDB5 loaded micelles also prevented liver sinusoidal endothelial capillarization (LSEC) and therefore restored perfusion between blood and liver cells. Conclusions: Our study provides evidence that MDB5 was more potent in inhibiting Hh pathway in HSC-T6 cells and showed better hepatoprotection in CBDL mice compared to GDC-0449.
Collapse
|
8
|
Jiang Y, Zhu D, Liu W, Qin Q, Fang Z, Pan Z. Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness. Stem Cell Res Ther 2019; 10:198. [PMID: 31277696 PMCID: PMC6612207 DOI: 10.1186/s13287-019-1299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Follicle depletion is one of the causes of premature ovarian failure (POF) and primary ovarian insufficiency (POI). Hence, maintenance of a certain number of female germline stem cells (FGSCs) is optimal to produce oocytes and replenish the primordial follicle pool. The mechanism that regulates proliferation or stemness of FGSCs could contribute to restoring ovarian function, but it remains uncharacterized in postnatal mammalian ovaries. This study aims to investigate the mechanism by which inhibiting the activity of the hedgehog (Hh) signaling pathway regulates follicle development and FGSC proliferation. Methods and results To understand the role of the Hh pathway in ovarian aging, we measured Hh signaling activity at different reproductive ages and the correlation between them in physiological and pathological mice. Furthermore, we evaluated the follicle number and development and the changes in FGSC proliferation or stemness after blocking the Hh pathway in vitro and in vivo. In addition, we aimed to explain one of the mechanisms for the FGSC phenotype changes induced by treatment with the Hh pathway-specific inhibitor GANT61 via oxidative stress and apoptosis. The results show that the activity of Hh signaling is decreased in the ovaries in physiological aging and POF models, which is consistent with the trend of expression levels of the germline stem cell markers Mvh and Oct4. In vitro, blocking the Hh pathway causes follicular developmental disorders and depletes ovarian germ cells and FGSCs after treating ovaries with GANT61. The proliferation or stemness of cultured primary FGSCs is reduced when Hh activity is blocked. Our results show that the antioxidative enzyme level and the ratio of Bcl-2/Bax decrease, the expression level of caspase 3 increases, the mitochondrial membrane potential is abnormal, and ROS accumulate in this system. Conclusions We observed that the inhibition of the Hh signaling pathway with GANT61 could reduce primordial follicle number and decrease FGSC reproductive capacity or stemness through oxidative damage and apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Jiang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Dantian Zhu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wenfeng Liu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiushi Qin
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi Fang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China. .,Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
9
|
Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus. Mol Immunol 2019; 111:87-94. [PMID: 31048099 DOI: 10.1016/j.molimm.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
Abstract
Reticuloendotheliosis virus (REV), an avian retrovirus is able to infect a variety of birds and can cause immunosuppression. The aim of this study was to investigate the relationship of thymic lymphocytes apoptosis, proliferation and T cell subtype with immunosuppression. In this study, a hundred and twenty one-day old SPF chickens were randomly divided into control groups (group C) and a REV infection groups (group I). The chickens of group I received intraperitoneal injections of REV with 104.62/0.1 ml TCID50. On day 14, 21, 28 and 35 post-inoculation, the chickens of C group and I group were sacrificed by cardiac puncture blood collection, and the thymic lymphocytes was sterile collected. The proliferation ability of lymphocytes was tested by Cell Counting Kit-8. Flow cytometry was performed to detect apoptosis, cell cycle stage and the change in T cell subtype. The RNA genome copy numbers of REV virus were detected using real-time PCR. Real-time PCR and western blotting were performed to analyze the expression of CyclinD1 and Bcl-2. Our results showed that REV genome copy number steadily declined, the proliferation potential of thymic lymphocytes was inhibited, lymphocytes apoptosed, the ratio of CD4+/CD8+ decreased and the expression of CyclinD1 and Bcl-2 were firstly inhibited, then rapidly recovered. Thus, immunosuppression lead by REV is closely related to the change of T cell subtype, apoptosis, and proliferation of thymic lymphocytes.
Collapse
|
10
|
Bariwal J, Kumar V, Dong Y, Mahato RI. Design of Hedgehog pathway inhibitors for cancer treatment. Med Res Rev 2018; 39:1137-1204. [PMID: 30484872 DOI: 10.1002/med.21555] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling is involved in the initiation and progression of various cancers and is essential for embryonic and postnatal development. This pathway remains in the quiescent state in adult tissues but gets activated upon inflammation and injuries. Inhibition of Hh signaling pathway using natural and synthetic compounds has provided an attractive approach for treating cancer and inflammatory diseases. While the majority of Hh pathway inhibitors target the transmembrane protein Smoothened (SMO), some small molecules that target the signaling cascade downstream of SMO are of particular interest. Substantial efforts are being made to develop new molecules targeting various components of the Hh signaling pathway. Here, we have discussed the discovery of small molecules as Hh inhibitors from the diverse chemical background. Also, some of the recently identified natural products have been included as a separate section. Extensive structure-activity relationship (SAR) of each chemical class is the focus of this review. Also, clinically advanced molecules are discussed from the last 5 to 7 years. Nanomedicine-based delivery approaches for Hh pathway inhibitors are also discussed concisely.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
11
|
Leng X, Shang J, Gao D, Wu J. Low-intensity pulsed ultrasound promotes proliferation and migration of HaCaT keratinocytes through the PI3K/AKT and JNK pathways. ACTA ACUST UNITED AC 2018; 51:e7862. [PMID: 30365726 PMCID: PMC6207286 DOI: 10.1590/1414-431x20187862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
Although the effects of low-intensity pulsed ultrasound (LIPUS) on diverse cell types have been fully studied, the functional role of LIPUS in keratinocytes remains poorly understood. This study aimed to investigate the effects of LIPUS on proliferation and migration of HaCaT cells as well as the regulatory mechanisms associated with signaling pathways. Human HaCaT cells were exposed or not to LIPUS, and cell proliferation and migration were measured by BrdU incorporation assay and Transwell assay, respectively. Expression of proteins associated with proliferation and migration was evaluated by western blot analysis. Expression of key kinases in the PI3K/AKT and JNK pathways was also evaluated by western blot analysis. Effects of LIPUS on the PI3K/AKT and JNK pathways, and whether LIPUS affected HaCaT cells via these two pathways were finally explored. When the parameter of LIPUS (number of cycles) was set at 300, cell viability was the highest after LIPUS stimulation. We then found that the percentage of BrdU positive cells was enhanced by LIPUS, along with up-regulation of cyclinD1, CDK6, CDK4, and VEGF. LIPUS promoted migration, as well as up-regulation of MMP-2 and MMP-9. Phosphorylation levels of key kinases in the PI3K/AKT and JNK pathways were increased by LIPUS. Inhibition of either PI3K/AKT pathway or JNK pathway attenuated effects of LIPUS on HaCaT cells, and co-inhibition of these two pathways showed augmented effects. LIPUS promoted proliferation and migration of HaCaT cells through activating the PI3K/AKT and JNK pathways.
Collapse
Affiliation(s)
- Xiaoyan Leng
- Department of Ultrasound, Chengyang People's Hospital, Qingdao, China
| | - Jing Shang
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Danhui Gao
- Department of Ultrasound, Chengyang People's Hospital, Qingdao, China
| | - Jiang Wu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Amarante MK, Vitiello GAF, Rosa MH, Mancilla IA, Watanabe MAE. Potential use of CXCL12/CXCR4 and sonic hedgehog pathways as therapeutic targets in medulloblastoma. Acta Oncol 2018; 57:1134-1142. [PMID: 29771176 DOI: 10.1080/0284186x.2018.1473635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor occurring in children, and although high long-term survival rates have been reached with current therapeutic protocols, several neurological injuries are still observed among survivors. It has been shown that the development of MB is highly dependent on the microenvironment surrounding it and that the CXCL12 chemokine and its receptor, CXCR4 and the Sonic Hedgehog (SHH) pathway are crucial for cerebellar development, coordinating proliferation and migration of embryonic cells and malfunctions in these axes can lead to MB development. Indeed, the concomitant overactivation of these axes was suggested to define a new MB molecular subgroup. New molecules are being studied, aiming to inhibit either CXCR4 or the SHH pathways and have been tested in preclinical settings for the treatment of cancers. The use of these molecules could improve MB treatment and save patients from aggressive surgery, chemotherapy and radiotherapy regimens, which are responsible for severe neurological consequences. This review aims to summarize current data about the experimental inhibition of CXCR4 and SHH pathways in MB and its potential implications in treatment of this cancer.
Collapse
Affiliation(s)
| | | | - Marcos Henrique Rosa
- Department of Pathological Sciences, Londrina State University, Londrina, Brazil
| | | | | |
Collapse
|
13
|
Riaz SK, Khan JS, Shah STA, Wang F, Ye L, Jiang WG, Malik MFA. Involvement of hedgehog pathway in early onset, aggressive molecular subtypes and metastatic potential of breast cancer. Cell Commun Signal 2018; 16:3. [PMID: 29329585 PMCID: PMC5795292 DOI: 10.1186/s12964-017-0213-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/28/2017] [Indexed: 12/03/2022] Open
Abstract
Background Dysregulation of hedgehog pathway is observed in numerous cancers. Relevance of hedgehog pathway genes in cancer cohort and inhibition of its downstream effector (GLI1) towards metastasis in cell lines are explored in the study. Method One hundred fifty fresh tumours of breast cancer patients were collected for the study. Based on differential expression, panel of 6 key regulators of the pathway (SHH, DHH, IHH, PTCH1, SMO and GLI1) in microarray datasets were identified. Expressional profiles of aforementioned genes were later correlated with clinico-pathological parameters in Pakistani breast cancer cohort at transcript and protein levels. In addition, GLI1 over expressing breast cancer cell lines (MDA-MB-231 and MCF-7) were treated with GANT61 to explore its probable effects on metastasis. Result SHH, DHH, PTCH1 and GLI1 were significantly over-expressed in tumours as compared with respective normal mammary tissues. A significant correlation of SHH, DHH and GLI1 expression with advanced tumour size, stages, grades, nodal involvement and distant metastasis was observed (p < 0.05). Over-expression of SHH, DHH and GLI1 was significantly related with patients having early onset and pre-menopausal status. Of note, hedgehog pathway was frequently up regulated in luminal B and triple negative breast cancer affected women. In addition, positive correlations were observed among aforementioned members of pathway and Ki67 (r-value: 0.63–0.78) emphasizing their role towards disease progression. Exposure of GANT61 (inhibitor for GLI1) significantly restricted cell proliferation, reduced cell motility and invasion. Conclusion Role of activated hedgehog pathway in breast cancer metastasis provides a novel target for cancer therapy against aggressive cancer subtypes. Electronic supplementary material The online version of this article (10.1186/s12964-017-0213-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Syeda Kiran Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Zip code: 44000, Pakistan
| | - Jahangir Sarwar Khan
- Department of Surgery, Holy Family Hospital, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Zip code: 44000, Pakistan
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, USA
| | - Lin Ye
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, UK
| | - Muhammad Faraz Arshad Malik
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Zip code: 44000, Pakistan.
| |
Collapse
|
14
|
Wang S, Li X, Yan L, Nie Q, Dai J, Chen H, Wang J, Sun Y. Tamoxifen inhibits fibroblast proliferation and prevents epidural fibrosis by regulating the AKT pathway in rats. Biochem Biophys Res Commun 2018; 497:937-942. [PMID: 29309792 DOI: 10.1016/j.bbrc.2018.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Many factors contribute to epidural fibrosis after lumbar laminectomy, particularly the excessive proliferation of fibroblasts. Many studies have shown that tamoxifen (TAM) inhibits fibroblast proliferation and reduces fibrosis, but the detailed effect and mechanism of TAM on preventing epidural fibrosis are unknown. To investigate the effect of TAM on fibroblast proliferation and epidural fibrosis, fibroblasts were cultured and treated with different concentrations of TAM. Cell Counting Kit-8(CCK-8) detection, cell cycle analysis and western blot analysis were used to detect the roles of TAM in regulating fibroblast proliferation. Lumbar laminectomies were performed in rats, and various concentrations of TAM were administered by gavage. Histological and immunohistochemical analyses were used to evaluate the effects of TAM on preventing epidural fibrosis. CCK-8 detection showed that TAM could inhibit fibroblast viability; western blot analysis showed that TAM could decrease the expression of proliferative proteins p-AKT and cyclinD1 and increase the expression of antiproliferative proteins P21 and P27. Histological analysis showed that TAM could reduce epidural fibrosis. Immunohistochemical analysis showed that the p-ATK expression in epidural scar tissue was decreased after TAM treatment. The present study demonstrated that TAM could inhibit fibroblast proliferation and prevent epidural fibrosis, potentially through the regulation of the AKT pathway.
Collapse
Affiliation(s)
- Shuguang Wang
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Xiaolei Li
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Lianqi Yan
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Qian Nie
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Jihang Dai
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Hui Chen
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China.
| | - Yu Sun
- Department of Orthopedics, Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, 225001, China.
| |
Collapse
|
15
|
Bao C, Kramata P, Lee HJ, Suh N. Regulation of Hedgehog Signaling in Cancer by Natural and Dietary Compounds. Mol Nutr Food Res 2017; 62. [PMID: 29164817 DOI: 10.1002/mnfr.201700621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/14/2017] [Indexed: 12/12/2022]
Abstract
The aberrant Hedgehog (Hh) signaling induced by mutations or overexpression of the signaling mediators has been implicated in cancer, associated with processes including inflammation, tumor cell growth, invasion, and metastasis, as well as cancer stemness. Small molecules targeting the regulatory components of the Hh signaling pathway, especially Smoothened (Smo), have been developed for the treatment of cancer. However, acquired resistance to a Smo inhibitor vismodegib observed in clinical trials suggests that other Hh signaling components need to be explored as potential anticancer targets. Natural and dietary compounds provide a resource for the development of potent agents affecting intracellular signaling cascades, and numerous studies have been conducted to evaluate the efficacy of natural products in targeting the Hh signaling pathway. In this review, we summarize the role of Hh signaling in tumorigenesis, discuss results from recent studies investigating the effect of natural products and dietary components on Hh signaling in cancer, and provide insight on novel small molecules as potential Hh signaling inhibitors.
Collapse
Affiliation(s)
- Cheng Bao
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Pavel Kramata
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Sun J, Wang K, Teng J, Yu Y, Hua R, Zhou H, Zhong D, Fan Y. Numb had anti-tumor effects in prostatic cancer. Biomed Pharmacother 2017; 92:108-115. [PMID: 28531799 DOI: 10.1016/j.biopha.2017.04.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of this study was to explain the Numb anti-cancer effects in the prostatic cancer. METHODS Collecting the 20 prostatic cancer patients and analyzing the correlation between Numb and Glease score. Transfection Numb into DU-145 and PC-3 cells, measuring the proliferation rate of difference groups by MTT assay, evaluating the cell apoptosis and cell cycle of difference group by Flow cytometry; measuring the invasion and migration abilities by transwell and wound healing assays. In the nude mice experiment, establish prostatic cancer nude mouse subcutaneous planting tumor model by DU-145 cells, Injection the Numb from tail vein. Evaluating the tumor volume and weight. RESULTS The Numb protein expression was decreased with Glease score increasing. The proliferation rate of Numb groups were significantly decreased compared with NC groups (P<0.05, respectively). The apoptosis and G1 phase rates of Numb groups were significantly enhanced compared with NC groups (P<0.05, respectively). The invasion and migration abilities of Numb group cells were significantly weaken compared with NC groups (P<0.05, respectively). In the WB assay, The relative proteins (Numb, P53, Cyclin D1, Rac1, MMP-2 and MMP-9) expression were significantly differences between NC and Numb groups (P<0.05, respectively). In the vivo experiment, the tumor volume and weight of Numb group was significantly lighter than NC group (P<0.05, respectively). CONCLUSION Overexpression Numb had anti-cancer effects to prostatic cancer in vitro and vivo experiments, the mechanism might be P53/Cyclin D1 and Rac1/MMP-2/-9 signaling pathway.
Collapse
Affiliation(s)
- Ji Sun
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China
| | - Kai Wang
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China
| | - Jingfei Teng
- Department of Urology, PLA Army General Hospital, Beijing, 100700, China
| | - Yufu Yu
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China
| | - Runmiao Hua
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China
| | - Haiyong Zhou
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China
| | - Dachuan Zhong
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China
| | - Yi Fan
- Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311202, China.
| |
Collapse
|