1
|
Duan P, Yu YL, Cheng YN, Nie MH, Yang Q, Xia LH, Ji YX, Pan ZY. Exosomal miR-1a-3p derived from glucocorticoid-stimulated M1 macrophages promotes the adipogenic differentiation of BMSCs in glucocorticoid-associated osteonecrosis of the femoral head by targeting Cebpz. J Nanobiotechnology 2024; 22:648. [PMID: 39438865 PMCID: PMC11494760 DOI: 10.1186/s12951-024-02923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND By interacting with bone marrow mesenchymal stem cells (BMSCs) and regulating their function through exosomes, bone macrophages play crucial roles in various bone-related diseases. Research has highlighted a notable increase in the number of M1 macrophages in glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Nevertheless, the intricate crosstalk between M1 macrophages and BMSCs in the glucocorticoid-stimulated environment has not been fully elucidated, and the underlying regulatory mechanisms involved in the occurrence of GA-ONFH remain unclear. METHODS We employed in vivo mouse models and clinical samples from GA-ONFH patients to investigate the interactions between M1 macrophages and BMSCs. Immunofluorescence staining was used to assess the colocalization of M1 macrophages and BMSCs. Flow cytometry and transcriptomic analysis were performed to evaluate the impact of exosomes derived from normal (n-M1) and glucocorticoid-stimulated M1 macrophages (GC-M1) on BMSC differentiation. Additionally, miR-1a-3p expression was altered in vitro and in vivo to assess its role in regulating adipogenic differentiation. RESULTS In vivo, the colocalization of M1 macrophages and BMSCs was observed, and an increase in M1 macrophage numbers and a decrease in bone repair capabilities were further confirmed in both GA-ONFH patients and mouse models. Both n-M1 and GC-M1 were identified as contributors to the inhibition of osteogenic differentiation in BMSCs to a certain extent via exosome secretion. More importantly, exosomes derived from GC-M1 macrophages exhibited a heightened capacity to regulate the adipogenic differentiation of BMSCs, which was mediated by miR-1a-3p. In vivo and in vitro, miR-1a-3p promoted the adipogenic differentiation of BMSCs by targeting Cebpz and played an important role in the onset and progression of GA-ONFH. CONCLUSION We demonstrated that exosomes derived from GC-M1 macrophages disrupt the balance between osteogenic and adipogenic differentiation in BMSCs, contributing to the pathogenesis of GA-ONFH. Inhibiting miR-1a-3p expression, both in vitro and in vivo, significantly mitigates the preferential adipogenic differentiation of BMSCs, thus slowing the progression of GA-ONFH. These findings provide new insights into the regulatory mechanisms underlying GA-ONFH and highlight potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yong-Le Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan-Nan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Meng-Han Nie
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Qing Yang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Liang-Hui Xia
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yan-Xiao Ji
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China.
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Zhen-Yu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Xu H, Wang L, Zhu X, Zhang H, Chen H, Zhang H. Jintiange capsule ameliorates glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating the activity and differentiation of BMSCs. J Tradit Complement Med 2024; 14:568-580. [PMID: 39262662 PMCID: PMC11384076 DOI: 10.1016/j.jtcme.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim A surplus of glucocorticoids (GC) is a main cause of non-traumatic osteonecrosis of the femoral head (ONFH), and Jintiange (JTG), as one of the traditional Chinese medicines (TCM), also plays an instrumental role in the alleviation of bone loss simultaneously. Therefore, JTG was thought to be able to reverse GC-induced ONFH (GC-ONFH) to a certain extent. Experimental procedure In vivo, the effect of JTG on trabeculae in the subchondral bone of the femoral head was investigated using micro-computed tomography (micro-CT), TdT-mediated dUTP nick end labeling (TUNEL) and histological staining; in vitro, proliferation, viability, apoptosis, and senescence of purified bone mesenchymal stem cells (BMSCs) were examined to demonstrate the direct impact of JTG on these cells. Meanwhile after using a series of interventions, the function of JTG on BMSC differentiation could be assessed by measuring of osteogenic and adipogenic markers at levels of protein and mRNA. Results Our final results demonstrated that with the involvement of Wnt/β-catenin pathway, JTG was able to significantly promote osteogenesis, restrain adipogenesis, delay senescence in BMSCs, reduce osteoclast number, weaken apoptosis, and enhance proliferation of osteocytes, all of which could mitigate the progression of subchondral osteonecrosis. Conclusion According to the results of experiments in vitro and vivo, JTG was deemed to relieve the early GC-ONFH using the prevention of destruction of subchondral bone, which was contributed to regulating the differentiation of BMSCs and the number of osteoclasts.
Collapse
Affiliation(s)
- Hui Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xunpeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haigang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongwei Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wu X, Tao Z, Cheng W. Microrna-206 induces hypoxic necrosis of femoral head by inhibiting VEGF/PI3K/AKT signaling pathway. Front Genet 2023; 14:1118831. [PMID: 36911416 PMCID: PMC9992790 DOI: 10.3389/fgene.2023.1118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
The most common form of non-traumatic necrosis of the femoral head is anoxic necrosis of the femoral head, which is a metabolic disease, mainly involving young and middle-aged people. Apoptosis and its related signal regulation pathway play an important role in the occurrence and development of hypoxic necrosis of the femoral head. In order to investigate the possible pathological manifestations of miR-206 and VEGF/PI3K/AKT signal pathway genes and their interactions in hypoxic necrosis of the femoral head, this paper intended to systematically study the expression and regulation mechanism of miR-206 and VEGF/PI3K/AKT signal pathway genes. The interaction between miR-206 and VEGF/PI3K/AKT signaling pathway and its regulation on apoptosis, differentiation and proliferation of human osteoblast cell line hFOB1.19 (SV40 transfer of human osteoblasts) were studied by double luciferase reporter gene analysis, overexpression and inhibition of miR-206, and gene silencing of VEGF/PI3K/AKT signaling pathway. After 24 h and 48 h of intervention with MicroRNA 206 on osteoblasts, it was found that the fluorescence intensity of caspase-3 was higher than that of 0 h group (p < 0.05). This paper has provided an important research basis for the research of femoral head necrosis and the development of new diagnosis and therapeutic drugs for this kind of disease. It also has provided a reference for the further promotion of the chemotherapy drug delivery system.
Collapse
Affiliation(s)
- Xingjing Wu
- Department of Orthopedics, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Zhoushan Tao
- Department of Orthopedics, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Wenjing Cheng
- Department of Orthopedics, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
4
|
Duan P, Wang H, Yi X, Zhang H, Chen H, Pan Z. C/EBPα regulates the fate of bone marrow mesenchymal stem cells and steroid-induced avascular necrosis of the femoral head by targeting the PPARγ signalling pathway. Stem Cell Res Ther 2022; 13:342. [PMID: 35883192 PMCID: PMC9327281 DOI: 10.1186/s13287-022-03027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/02/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The imbalance of osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely related to steroid-induced avascular necrosis of the femoral head (SANFH). We aimed to investigate the epigenetic mechanism of intramedullary fat accumulation and continuous osteonecrosis after glucocorticoid (GC) withdrawal in SANFH. METHODS An SANFH model was established in SD rats, which received an intermittent high GC dose for the first 4 weeks followed by an additional 4 weeks without GC. We explored the synergistic effects and mechanisms of C/EBPα and PPARγ on the differentiation of BMSCs by lentivirus-mediated gene knockdown and overexpression assays. A chromatin immunoprecipitation assay was performed to identify epigenetic modification sites on PPARγ in vivo and in vitro. RESULTS In the SANFH model, intramedullary fat was significantly increased, and the transcription factors C/EBPα and PPARγ were upregulated simultaneously in the femoral head. In vitro, C/EBPα promoted adipogenic differentiation of BMSCs by targeting the PPARγ signalling pathway, while overexpression of C/EBPα significantly impaired osteogenic differentiation. Further studies demonstrated that histone H3K27 acetylation of PPARγ played an important role in the epigenetic mechanism underlying SANFH. C/EBPα upregulates the histone H3K27 acetylation level in the PPARγ promoter region by inhibiting HDAC1. Additionally, inhibiting the histone acetylation level of PPARγ effectively prevented adipogenic differentiation, thus slowing the progression of SANFH. CONCLUSIONS Our results demonstrate the molecular mechanism by which C/EBPα regulates PPARγ expression by acetylating histones and revealed the epigenetic phenomenon in SANFH for the first time.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanyu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Xue F, Wu J, Feng W, Hao T, Liu Y, Wang W. MicroRNA‑141 inhibits the differentiation of bone marrow‑derived mesenchymal stem cells in steroid‑induced osteonecrosis via E2F3. Mol Med Rep 2022; 26:234. [PMID: 35616132 PMCID: PMC9178681 DOI: 10.3892/mmr.2022.12750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) affects the life of patients. MicroRNA-141 (miR-141) has been found associated with proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). E2F transcription factor 3 (E2F3) has been identified as the target of miR-141 to regulate cell proliferation. The aim of the present study was to investigate whether miR-141 and E2F3 were involved in the osteogenic differentiation of BMSCs during ONFH. BMSCs from 4-week-old Sprague-Dawley rats were transduced with miR-141 mimic or inhibitor lentiviruses. Alkaline phosphatase staining was performed to confirm osteogenic differentiation. Reverse transcription-quantitative PCR, luciferase reporter assays and western blot analysis were also used to examine the interaction between E2F3 and miR-141 in BMSCs from the control and ONFH rats. The lentiviral transductions were carried out successfully. The mRNA expression levels of miR-141 in ONFH were upregulated, while those of E2F3 were downregulated compared with the control rat. The luciferase reporter assays indicated that miR-141 could target E2F3. miR-141 knockdown upregulated the mRNA expression levels of E2F3. In addition, osteogenic differentiation of BMSCs was inhibited following miR-141 overexpression, but increased following miR-141 knockdown, as evidenced by the results of the alkaline phosphatase staining and western blot analysis. In conclusion, miR-141 inhibits the osteogenic differentiation of BMSCs in ONFH by targeting E2F3. These two molecules may represent novel candidates to examine in order to investigate the mechanism underlying ONFH.
Collapse
Affiliation(s)
- Fei Xue
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Jian Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Wei Feng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Ting Hao
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Yuan Liu
- Department of Orthopedic Surgery, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia Autonomous Region 010010, P.R. China
| | - Wenbo Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
6
|
Lin RLC, Sung PH, Wu CT, Tu YK, Lu YD, Yip HK, Lee MS. Decreased Ankyrin Expression Is Associated with Repressed eNOS Signaling, Cell Proliferation, and Osteogenic Differentiation in Osteonecrosis of the Femoral Head. J Bone Joint Surg Am 2022; 104:2-12. [PMID: 35389901 DOI: 10.2106/jbjs.20.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Reduced nitric oxide synthase (NOS) activity and decreased reparative potentials in stem cells may be involved in the pathogenesis of osteonecrosis of the femoral head (ONFH), but the underlying mechanism is not clear. Ankyrin, a cytoskeletal protein, can promote NOS expression and many cellular functions when it interacts with the CD44 receptors on the stem cells. This study investigated whether ankyrin is involved in the pathogenesis of ONFH. MATERIALS AND METHODS Bone marrow stem cells (BMSCs) from ONFH patients were compared with cells from patients with proximal femoral fracture and BMSC cell lines (PT-2501, Lonza, NC, USA). Differences in the expression levels and downstream signal pathway of ankyrin-Akt-eNOS in BMSCs were studied between ONFH and control. The involvement of ankyrin in the signal cascade, cell proliferation, and differentiation were further investigated by silencing ankyrin using small interfering (si)RNA. RESULTS We found the basal mRNA levels of ankyrin and CD44 in BMSCs from the ONFH group were significantly lower as compared with those from the control group. The signal transduction of CD44-ankyrin-Akt-eNOS was significantly repressed in the ONFH group as compared with the control group after hyaluronic acid treatment. Knockdown of ankyrin by siRNA could attenuate the eNOS signaling as well as the BMSCs proliferation and osteogenic differentiation. The proliferation ability and osteogenic differentiation potential of the BMSCs from the ONFH group were significantly reduced as compared with the control group, but they can be enhanced to the baseline levels of the control group by hyaluronic acid treatment. CONCLUSION The aberrant eNOS signaling, reduced cell proliferation, and osteogenic differentiation potential in BMSCs from ONFH patients are associated with the decreased ankyrin expression. CLINICAL RELEVANCE Altered signal transduction, proliferation, and osteogenic differentiation ability in BMSCs may be involved in the pathogenesis of ONFH. These need further studies especially in BMSC-based cell therapy.
Collapse
Affiliation(s)
- Rio L C Lin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Pei-Hsun Sung
- Department of Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Chen-Ta Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, EDa Hospital, Kaohsiung, Taiwan
| | - Yu-Der Lu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Hon-Kan Yip
- Department of Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| |
Collapse
|
7
|
Icariin regulates miR-23a-3p-mediated osteogenic differentiation of BMSCs via BMP-2/Smad5/Runx2 and WNT/β-catenin pathways in osteonecrosis of the femoral head. Saudi Pharm J 2022; 29:1405-1415. [PMID: 35002378 PMCID: PMC8720822 DOI: 10.1016/j.jsps.2021.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Icariin is commonly used for the clinical treatment of osteonecrosis of the femoral head (ONFH). miR-23a-3p plays a vital role in regulating the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The present study aimed to investigate the roles of icariin and miR-23a-3p in the osteogenic differentiation of BMSCs and an ONFH model. BMSCs were isolated and cultured in vitro using icariin-containing serum at various concentrations, and BMSCs were also transfected with a miR-23a inhibitor. The alkaline phosphatase (ALP) activity and cell viability as well as BMP-2/Smad5/Runx2 and WNT/β-catenin pathway-related mRNA and protein expression were measured in BMSCs. Additionally, a dual-luciferase reporter assay and pathway inhibitors were used to verify the relationship of icariin treatment/miR-23a and the above pathways. An ONFH rat model was established in vivo, and a 28-day gavage treatment and lentivirus transfection of miR-23a-3p inhibitor were performed. Then, bone biochemical markers (ELISA kits) in serum, femoral head (HE staining and Digital Radiography, DR) and the above pathway-related proteins were detected. Our results revealed that icariin treatment/miR-23a knockdown promoted BMSC viability and osteogenic differentiation as well as increased the mRNA and protein expression of BMP-2, BMP-4, Runx2, p-Smad5, Wnt1 and β-catenin in BMSCs and ONFH model rats. In addition, icariin treatment/miR-23a knockdown increased bone biochemical markers (ACP-5, BAP, NTXI, CTXI and OC) and improved ONFH in ONFH model rats. In addition, a dual-luciferase reporter assay verified that Runx2 was a direct target of miR-23a-3p. These data indicated that icariin promotes BMSC viability and osteogenic differentiation as well as improves ONFH by decreasing miR-23a-3p levels and regulating the BMP-2/Smad5/Runx2 and WNT/β-catenin pathways.
Collapse
Key Words
- BAP, bone-specific alkaline phosphatase
- BMP-2, bone morphogenetic protein-2
- BMP-2/Smad5/Runx2 pathway
- BMP-4, bone morphogenetic protein-4
- BMSCs, bone marrow-derived mesenchymal stem cells
- CTX-1, C-terminal telopeptides of type I collagen
- DMEM, Dulbecco’s modified Eagle’s medium
- DR, Digital Radiography
- FBS, fetal bovine serum
- HE, Hematoxylin‐eosin
- Icariin
- LPS, lipopolysaccharide
- NTX-1, N-terminal telopeptides of type I collagen
- OC, osteocalcin
- ONFH, osteonecrosis of the femoral head
- Osteonecrosis of the femoral head
- RT-PCR, Real time PCR
- SI, icariin-containing serum
- TRACP-5b, tartrate-resistant acid phosphatase 5b
- WNT/β-catenin pathway
- miR-23a-3p
Collapse
|
8
|
Wang G, Zhang L, Yan C, Zhang Y. Upregulation of microRNA-576-5p protects from steroid-induced avascular necrosis of the femoral head by suppressing ANXA2. Cell Cycle 2022; 21:49-62. [PMID: 34890298 PMCID: PMC8837248 DOI: 10.1080/15384101.2021.1988377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a common orthopedic disease. Evidence has shown that microRNAs (miRNAs) played essential roles in the development of SANFH. Nevertheless, the role of miR-576-5p in SANFH remains unknown. The rabbit SANFH models were constructed by injection of horse serum and methylprednisolone. Bone mineral density (BMD) of the proximal femur (including the femoral head), pathological changes, bone cell apoptosis and expressions of OPG/RANK in femoral head bone tissue were assessed upon treatment of up-regulation of miR-576-5p or knockdown of ANXA2. Osteoblasts were extracted from SANFH rabbit femoral head and cultured. Proliferation, apoptosis and mineralization were tested upon treatment of up-regulation of miR-576-5p or knockdown of ANXA2. The targeting relationship between miR-576-5p and ANXA2 was verified. Up-regulated miR-576-5p or down-regulated ANXA2 inhibited the decrease of BMD, improved pathological changes, limited cell apoptosis and increased OPG/RANKL ratio in bone tissues of SANFH rabbits. Up-regulating miR-576-5p or down-regulating ANXA2 promoted proliferation and mineralization and inhibited apoptosis of osteoblasts from SANFH rabbits. In addition, ANXA2 was found to be a target gene of miR-576-5p. Furthermore, overexpression of ANXA2 abolished the protective role of elevated miR-576-5p against femoral head necrosis. Elevated miR-576-5p or reduced ANXA2 repressed the progression of SANFH. This study may provide novel biomarkers for SANFH diagnosis and treatment.
Collapse
Affiliation(s)
- Gang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lecheng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuelei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Zhang F, Yan Y, Peng W, Wang L, Wang T, Xie Z, Luo H, Zhang J, Dong W. PARK7 promotes repair in early steroid-induced osteonecrosis of the femoral head by enhancing resistance to stress-induced apoptosis in bone marrow mesenchymal stem cells via regulation of the Nrf2 signaling pathway. Cell Death Dis 2021; 12:940. [PMID: 34645791 PMCID: PMC8514492 DOI: 10.1038/s41419-021-04226-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Novel therapies for the treatment of early steroid-induced osteonecrosis of the femoral head (SONFH) are urgently needed in orthopedics. Transplantation of bone marrow mesenchymal stem cells (BMSCs) provides new strategies for treating this condition at the early stage. However, stress-induced apoptosis of BMSCs transplanted into the femoral head necrotic area limits the efficacy of BMSC transplantation. Inhibiting BMSC apoptosis is key to improving the efficacy of this procedure. In our previous studies, we confirmed that Parkinson disease protein 7 (PARK7) is active in antioxidant defense and can clear reactive oxygen species (ROS), protect the mitochondria, and impart resistance to stress-induced apoptosis in BMSCs. In this study, we investigated the mechanism driving this PARK7-mediated resistance to apoptosis in BMSCs. Our results indicate that PARK7 promoted the disintegration of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like echinacoside-associated protein 1 (Keap1) complex. The free Nrf2 then entered the nucleus and activated the genetic expression of manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), and other antioxidant enzymes that clear excessive ROS, thereby protecting BMSCs from stress-induced apoptosis. To further explore whether PARK7-mediated resistance to stress-induced apoptosis could improve the efficacy of BMSC transplantation in early-stage SONFH, we transplanted BMSCs-overexpressing PARK7 into rats with early-stage SONFH. We then evaluated the survival of transplanted BMSCs and bone regeneration in the femoral head necrotic area of these rats. The results indicated that PARK7 promoted the survival of BMSCs in the osteonecrotic area and improved the transplantation efficacy of BMSCs on early-stage SONFH. This study provides new ideas and methods for resisting the stress-induced apoptosis of BMSCs and improving the transplantation effect of BMSCs on early-stage SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yanglin Yan
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
10
|
Gujiansan Ameliorates Avascular Necrosis of the Femoral Head by Regulating Autophagy via the HIF-1 α/BNIP3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6683007. [PMID: 34512780 PMCID: PMC8426065 DOI: 10.1155/2021/6683007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/21/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
Background Clinically, the traditional Chinese medicine compound Gujiansan has been widely used in the treatment of steroid-induced avascular necrosis of the femoral head (SANFH). The present study aimed to investigate the mechanisms underlying the therapeutic effect of Gujiansan. Methods A rat model of SANFH was established by the injection of dexamethasone (DEX) at a high dosage of 25 mg/kg/d. Then, Gujiansan was intragastrically administered for 2 weeks, 4 weeks, and 8 weeks, and histological examination of the femoral head was performed. The expression levels of related mRNAs and proteins were analyzed by qRT-PCR, Western blotting, and immunohistochemistry, and the levels of bone biochemical markers and cytokines were detected with ELISA kits. Results Gujiansan administration ameliorated SANFH and induced the expression of hypoxia-inducible factor-1α (HIF-1α), Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), LC3, and Beclin-1 in the rat model in a dose- and time-dependent manner, and Gujiansan promoted osteocalcin secretion at the femoral head. In addition, Gujiansan increased the levels of bone formation- and bone resorption-specific markers (osteocalcin (OC), bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase-5b (TRACP-5b), N-terminal telopeptides of type I collagen (NTX-1), and C-terminal telopeptide of type I collagen (CTX-1)) and decreased the levels of proinflammatory cytokines (TNF-α, IL-6, and CRP) in a dose- and time-dependent manner. Conclusions Gujiansan accelerates the formation of a new bone, promotes the absorption of the damaged bone, inhibits the inflammatory response, induces autophagy of the femoral head via the HIF-1α/BNIP3 pathway, and ultimately ameliorates SANFH.
Collapse
|
11
|
Fan R, Liu K, Zhou Z. Abnormal Lipid Profile in Fast-Growing Broilers With Spontaneous Femoral Head Necrosis. Front Physiol 2021; 12:685968. [PMID: 34194339 PMCID: PMC8236708 DOI: 10.3389/fphys.2021.685968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigated lipid metabolism in broilers with spontaneous femoral head necrosis (FHN) by determining the levels of markers of the blood biochemistry and bone metabolism. The birds were divided into a normal group and FHN group according to the femoral head scores of 3-, 4-, and 5-week-old chickens with FHN, and a comparative study was conducted. The study showed that spontaneous FHN broilers had a lipid metabolism disorder, hyperlipidemia, and an accumulation of lipid droplets in the femur. In addition, there were significant changes in the bone parameters and blood bone biochemistry markers, and the expression of genes related to lipid metabolism in the femoral head was also significantly increased. Therefore, FHN may result from dyslipidemia, which affects the bone growth and development of broilers.
Collapse
Affiliation(s)
| | | | - Zhenlei Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Xu H, Wang C, Liu C, Peng Z, Li J, Jin Y, Wang Y, Guo J, Zhu L. Cotransplantation of mesenchymal stem cells and endothelial progenitor cells for treating steroid-induced osteonecrosis of the femoral head. Stem Cells Transl Med 2021; 10:781-796. [PMID: 33438370 PMCID: PMC8046137 DOI: 10.1002/sctm.20-0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/20/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (ONFH) is characterized by decreased osteogenesis, angiogenesis, and increased adipogenesis. While bone tissue engineering has been widely investigated to treat ONFH, its therapeutic effects remain unsatisfactory. Therefore, further studies are required to determine optimal osteogenesis, angiogenesis and adipogenesis in the necrotic area of the femoral head. In our study, we developed a carboxymethyl chitosan/alginate/bone marrow mesenchymal stem cell/endothelial progenitor cell (CMC/ALG/BMSC/EPC) composite implant, and evaluated its ability to repair steroid-induced ONFH. Our in vitro studies showed that BMSC and EPC coculture displayed enhanced osteogenic and angiogenic differentiation. When compared with single BMSC cultures, adipogenic differentiation in coculture systems was reduced. We also fabricated a three-dimensional (3D) CMC/ALG scaffold for loading cells, using a lyophilization approach, and confirmed its good cell compatibility characteristics, that is, high porosity, low cytotoxicity and favorable cell adhesion. 3D coculture of BMSCs and EPCs also promoted secretion of osteogenic and angiogenic factors. Then, we established an rabbit model of steroid-induced ONFH. The CMC/ALG/BMSC/EPC composite implant was transplanted into the bone tunnel of the rabbit femoral head after core decompression (CD) surgery. Twelve weeks later, radiographical and histological analyses revealed CMC/ALG/BMSC/EPC composite implants had facilitated the repair of steroid-induced ONFH, by promoting osteogenesis and angiogenesis, and reducing adipogenesis when compared with CD, CMC/ALG, CMC/ALG/BMSC and CMC/ALG/EPC groups. Thus, our data show that cotransplantation of BMSCs and EPCs in 3D scaffolds is beneficial in treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
- Department of Histology and EmbryologySouthern Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Tissue Construction and Detection of Guangdong ProvinceGuangzhouPeople's Republic of China
- Institute of Bone BiologyAcademy of Orthopaedics, Guangdong ProvinceGuangzhouPeople's Republic of China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical CenterZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
13
|
Elgaz S, Bonig H, Bader P. Mesenchymal stromal cells for osteonecrosis. J Transl Med 2020; 18:399. [PMID: 33081809 PMCID: PMC7576732 DOI: 10.1186/s12967-020-02565-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022] Open
Abstract
Osteonecrosis (ON) is an acquired debilitating skeletal disorder, which is caused by a multitude of traumatic and non-traumatic etiological factors. Vascular damage, mechanical stress and increased intraosseous pressure have been discussed as contributors to ON. The optimal treatment of ON remains to be determined, since the current gold standard, core decompression, is insufficiently effective. Specific properties of mesenchymal stromal cells (MSCs) provide the rationale for their assessment in advanced stages of ON: Osteoinductive potential has been demonstrated and MSC preparations of suitable quality for use as medicinal products have been developed. Here we review the scant information on the use of allogeneic or autologous MSCs in advanced ON as well as potentially supportive data from pre-clinical studies with autologous bone marrow mononuclear cells (auto BM-MNCs), which have been studied quite extensively and the presumed therapeutic effect of which was attributed to the rare MSCs contained in these cell products. Outcomes in clinical trials with MSCs and auto-BM-MNCs remain preliminary and non-definitive, at best promising, with respect to their pharmacological effect. Clearly, though, the application of any of these cell therapies was technically feasible and safe in that it was associated with low complication rates. The heterogeneity of cell type and source, study protocols, cell manufacturing, cell properties, cell doses and surgical techniques might contribute to inconsistent results.
Collapse
Affiliation(s)
- S Elgaz
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - H Bonig
- Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Baden-Württemberg-Hessen, Goethe University, Frankfurt am Main, Germany
| | - P Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Zhang F, Peng W, Zhang J, Wang L, Dong W, Zheng Y, Wang Z, Xie Z, Wang T, Wang C, Yan Y. PARK7 enhances antioxidative-stress processes of BMSCs via the ERK1/2 pathway. J Cell Biochem 2020; 122:222-234. [PMID: 32918333 PMCID: PMC7820948 DOI: 10.1002/jcb.29845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Oxidative stresss in the microenvironment surrounding lesions induces apoptosis of transplanted bone‐marrow‐derived mesenchymal stem cells (BMSCs). Hence, there is an urgent need for improving antioxidative‐stress processes of transplanted BMSCs to further promote their survival. The present study reports the role and mechanism of Parkinson's disease protein 7 (PARK7) in enhancing antioxidative activity in BMSCs. We used a PARK7 lentivirus to transfect BMSCs to up‐ or downregulate PARK7, and then used H2O2 to simulate oxidative stress in BMSCs in vitro. Overexpression of PARK7 effectively reduced reactive oxygen species and malondialdehyde, protected mitochondrial membrane potential, and resisted oxidative‐stress‐induced apoptosis of BMSCs, but the expression of PARK7 was downregulated, these results were reversed. At the same time, we also found that overexpression of PARK7 increased extracellular‐regulated protein kinase 1/2 (ERK1/2) phosphorylation and nuclear translocation, as well as upregulated Elk1 phosphorylation and superoxide dismutase (SOD) expression. In contrast, when U0126 was used to block the ERK1/2 pathway, ERK1/2 and Elk1 phosphorylation levels were downregulated, ERK1/2 nuclear translocation and SOD content were significantly reduced, and PARK7‐overexperssion‐induced antioxidative activity was completely blocked. Collectively, our results suggest that PARK7 overexpression increased antioxidative‐stress processes and survival of BMSCs subjected to H2O2 via activating the ERK1/2 signaling pathway. Our findings may guide the development of a PARK7‐specific strategy for improving the transplantation efficacy of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wuxun Peng
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Zhang
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Wang
- Department of Statistics, Guizhou Maternal and Child Health Hospital, Guiyang, Guizhou, China
| | - Wentao Dong
- Department of Traumatologic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinggang Zheng
- Department of Orthopedics, The Affiliated Wudang Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenwen Wang
- Department of Orthopedics, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhihong Xie
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Wang
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chuan Wang
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanglin Yan
- School of clinical medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
15
|
Xu HH, Li SM, Fang L, Xia CJ, Zhang P, Xu R, Shi ZY, Zou Z, Ge QW, Wang P, Tong PJ, Jin HT. Platelet-rich plasma promotes bone formation, restrains adipogenesis and accelerates vascularization to relieve steroids-induced osteonecrosis of the femoral head. Platelets 2020; 32:950-959. [PMID: 32835568 DOI: 10.1080/09537104.2020.1810221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Steroid-associated necrosis of the femoral head (SANFH) is one of the most common and refractory chronic diseases with increasing incidence. The typical pathological changes of SANFH include decreased osteogenic differentiation, enhanced intramedullary adipocytes deposition and impaired osseous circulation. In this study, we investigated the effects and potential mechanisms of Platelet-rich plasma (PRP) on SANFH. Sixty Sprague-Dawley rats were randomly divided into the control, PRP donor, model, and PRP groups. Compared to the model group, PRP treatment significantly increased the hemorheological indexes and serum levels of bone gla-protein (BGP) and vascular endothelial growth factor (VEGF), while decreased the levels of triglyceride (TG) and total cholesterol (TC). Meanwhile, Micro-CT and histopathological stain (Hematoxylin-eosin and Alcian blue-hematoxylin/orange G staining) were performed on the femoral head for morphological and histopathological evaluation, indicating that bone trabecular microstructure and bone mineral density (BMD) were significantly improved after PRP treatment. Immunohistochemical analysis revealed that PRP remarkably up-regulated the expression of osteogenic markers including β-catenin and alkaline phosphatase (ALP), angiogenic markers containing VEGF and platelet endothelial cell adhesion molecule-1 (CD31), while down-regulated adipogenic markers involving fatty acid-binding protein (FABP-4), and peroxisome proliferator-activated receptor gamma (PPAR-γ) in SANFH rat models. In summary, for the first time, PRP was demonstrated to prevent the development of SANFH through stimulating bone formation and vascularization as well as retarding adipogenesis.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Suo-Mi Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liang Fang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chen-Jie Xia
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen-Yu Shi
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen Zou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qin-Wen Ge
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Pinger Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Pei-Jian Tong
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hong-Ting Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Lin YH, Kang L, Feng WH, Cheng TL, Tsai WC, Huang HT, Lee HC, Chen CH. Effects of Lipids and Lipoproteins on Mesenchymal Stem Cells Used in Cardiac Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21134770. [PMID: 32635662 PMCID: PMC7369828 DOI: 10.3390/ijms21134770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have two characteristics of interest for this paper: the ability to self-renew, and the potential for multiple-lineage differentiation into various cells. MSCs have been used in cardiac tissue regeneration for over a decade. Adult cardiac tissue regeneration ability is quite low; it cannot repair itself after injury, as the heart cells are replaced by fibroblasts and lose function. It is therefore important to search for a feasible way to repair and restore heart function through stem cell therapy. Stem cells can differentiate and provide a source of progenitor cells for cardiomyocytes, endothelial cells, and supporting cells. Studies have shown that the concentrations of blood lipids and lipoproteins affect cardiovascular diseases, such as atherosclerosis, hypertension, and obesity. Furthermore, the MSC lipid profiles, such as the triglyceride and cholesterol content, have been revealed by lipidomics, as well as their correlation with MSC differentiation. Abnormal blood lipids can cause serious damage to internal organs, especially heart tissue. In the past decade, the accumulated literature has indicated that lipids/lipoproteins affect stem cell behavior and biological functions, including their multiple lineage capability, and in turn affect the outcome of regenerative medicine. This review will focus on the effect of lipids/lipoproteins on MSC cardiac regenerative medicine, as well as the effect of lipid-lowering drugs in promoting cardiomyogenesis-associated MSC differentiation.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Han Feng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-L.C.); (H.-T.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-L.C.); (H.-T.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: (H.-C.L.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-L.C.); (H.-T.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: (H.-C.L.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| |
Collapse
|
17
|
Fu L, Liu H, Lei W. MiR-596 inhibits osteoblastic differentiation and cell proliferation by targeting Smad3 in steroid-induced osteonecrosis of femoral head. J Orthop Surg Res 2020; 15:173. [PMID: 32410637 PMCID: PMC7224111 DOI: 10.1186/s13018-020-01688-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background It is reported that miR-596 has a potential diagnostic value for non-traumatic osteonecrosis of the femoral head (NOFH), but its underlying mechanisms in NOFH is unclear. Methods The expression of miR-596 and Smad3 was detected by western blot and quantitative real-time PCR. The relationship between the two molecules was explored using Dual-Luciferase Reporter Assay. Glucocorticoid (GC)—dexamethasone, was used to induce bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation, and the effects of miR-596 on BMSC osteogenic differentiation and proliferation were determined. Results MiR-596 expression was upregulated, while Smad3 expression was inhibited in the bone marrow samples of patients with steroid-induced osteonecrosis of femoral head (SANFH). Overexpression of miR-596 inhibited the proliferation and osteogenic differentiation of BMSCs induced by GC. Meanwhile, the opposite results were observed in the miR-596 inhibitor group. In addition, Smad3 was a target gene of miR-596, and negatively regulated by miR-596. The promotion effect of the miR-596 inhibitor on BMSC proliferation and osteogenic differentiation was reversed by si-Smad3. Conclusion MiR-596 can suppress GC-BMSC osteoblastic differentiation and proliferation by regulating Smad3 expression.
Collapse
Affiliation(s)
- Ligong Fu
- Department of Orthopaedic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Huawei Liu
- Department of Orthopaedic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Weijun Lei
- Department of Orthopaedic Surgery, Hongze Huaian District People's Hospital, No. 102 Dongfeng Road, Hongze District, Huai'an City, 223100, Jiangsu Province, China.
| |
Collapse
|
18
|
Lv H, Yang H, Wang Y. Effects of miR-103 by negatively regulating SATB2 on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. PLoS One 2020; 15:e0232695. [PMID: 32379794 PMCID: PMC7205233 DOI: 10.1371/journal.pone.0232695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background The proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMScs) are modulated by a variety of microRNAs (miRNAs). SATB homeobox 2 (SATB2) is a critical transcription factor that contributes to maintain the balance of bone metabolism. However, it remains unclear how the regulatory relationship between miR-103 and SATB2 on HBMScs proliferation and osteogenic differentiation. Methods HBMScs were obtained from Cyagen Biosciences and successful induced osteogenic differentiation. The proliferation abilities of HBMScs after treatment with agomiR-103 and antagomiR-103 were assessed using a cell counting Kit-8 (CCK-8) assay, and osteogenic differentiation was determined using alizarin red S staining and alkaline phosphatase (ALP) activity assay. The expression levels of miR-103, SATB2, and associated osteogenic differentiation biomarkers, including RUNX family transcription factor 2 (RUNX2), bone gamma-carboxyglutamate protein (BGLAP), and secreted phosphoprotein 1 (SPP1), were evaluated using real-time qPCR and Western blot. The regulatory sites of miR-103 on SATB2 were predicted using bioinformatics software and validated using a dual luciferase reporter assay. The underlying mechanism of miR-103 on SATB2-medicated HBMScs proliferation and osteogenic differentiation were confirmed by co-transfection of antagomiR-103 and SATB2 siRNA. Results The expression of miR-103 in HBMScs after induction of osteogenic differentiation was reduced in a time-dependent way. Overexpression of miR-103 by transfection of agomiR-103 suppressed HBMScs proliferation and osteogenic differentiation, while silencing of miR-103 by antagomiR-103 abolished these inhibitory effects. Consistently, RUNX2, BGLAP and SPP1 mRNA and protein expression were decreased in agomiR-103 treated HBMScs compared with those in agomiR-NC group. Meanwhile, antagomiR-103 upregulated the mRNA and protein expression levels of RUNX2, BGLAP and SPP1 in HBMScs. Further studies revealed that SATB2 was a direct target gene of miR-103. BMSCs transfected with agomiR-103 exhibited significantly downregulated protein expression level of SATB2, whereas knockdown of miR-103 promoted it. Additionally, rescue assays confirmed that silencing of SATB2 partially reversed the effects of antagomiR-103 induced HBMScs proliferation and osteogenic differentiation. Conclusions The present results suggested that miR-103 negatively regulates SATB2 to serve an inhibitory role in the proliferation and osteogenic differentiation of HBMScs, which sheds light upon a potential therapeutic target for treating bone-related diseases.
Collapse
Affiliation(s)
- Hao Lv
- Department of Trauma Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, P.R. China
| | - Huashan Yang
- Department of Trauma Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, P.R. China
| | - Yuanrui Wang
- Department of Trauma Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, P.R. China
- * E-mail:
| |
Collapse
|
19
|
Zhu W, Guo M, Yang W, Tang M, Chen T, Gan D, Zhang D, Ding X, Zhao A, Zhao P, Yan W, Zhang J. CD41-deficient exosomes from non-traumatic femoral head necrosis tissues impair osteogenic differentiation and migration of mesenchymal stem cells. Cell Death Dis 2020; 11:293. [PMID: 32341357 PMCID: PMC7184624 DOI: 10.1038/s41419-020-2496-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Non-traumatic osteonecrosis of the femoral head (ONFH) is clinically a devastating and progressive disease without an effective treatment. Mesenchymal stem cells (MSCs) transplantation has been used to treat ONFH in early stage, but the failure rate of this therapy is high due to the reduced osteogenic differentiation and migration of the transplanted MSCs related with pathological bone tissues. However, the mechanism responsible for this decrease is still unclear. Therefore, we assume that the implanted MSCs might be influenced by signals delivered from pathological bone tissue, where the exosomes might play a critical role in this delivery. This study showed that exosomes from ONFH bone tissues (ONFH-exos) were able to induce GC-induced ONFH-like damage, in vivo and impair osteogenic differentiation and migration of MSCs, in vitro. Then, we analyzed the differentially expressed proteins (DEPs) in ONFH-exos using proteomic technology and identified 842 differentially expressed proteins (DEPs). On the basis of gene ontology (GO) enrichment analysis of DEPs, fold-changes and previous report, cell adhesion-related CD41 (integrin α2b) was selected for further investigation. Our study showed that the CD41 (integrin α2b) was distinctly decreased in ONFH-exos, compared to NOR-exos, and downregulation of CD41 could impair osteogenic differentiation and migration of the MSCs, where CD41-integrin β3-FAK-Akt-Runx2 pathway was involved. Finally, our study further suggested that CD41-affluent NOR-exos could restore the glucocorticoid-induced decline of osteogenic differentiation and migration in MSCs, and prevent GC-induced ONFH-like damage in rat models. Taken together, our study results revealed that in the progress of ONFH, exosomes from the pathological bone brought about the failure of MSCs repairing the necrotic bone for lack of some critical proteins, like integrin CD41, and prompted the progression of experimentally induced ONFH-like status in the rat. CD41 could be considered as the target of early diagnosis and therapy in ONFH.
Collapse
Affiliation(s)
- Weiwen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - MinKang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Min Tang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Delu Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dian Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojuan Ding
- Department of Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anping Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pei Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Zhang F, Peng W, Zhang J, Dong W, Wu J, Wang T, Xie Z. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death Dis 2020; 11:42. [PMID: 31959744 PMCID: PMC6971291 DOI: 10.1038/s41419-020-2238-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Survival and stemness of bone marrow mesenchymal stem cells (BMSCs) in osteonecrotic areas are especially important in the treatment of early steroid-induced osteonecrosis of the femoral head (ONFH). We had previously used BMSCs to repair early steroid-induced ONFH, but the transplanted BMSCs underwent a great deal of stress-induced apoptosis and aging in the oxidative-stress (OS) microenvironment of the femoral-head necrotic area, which limited their efficacy. Our subsequent studies have shown that under OS, massive accumulation of damaged mitochondria in cells is an important factor leading to stress-induced apoptosis and senescence of BMSCs. The main reason for this accumulation is that OS leads to upregulation of protein 53 (P53), which inhibits mitochondrial translocation of Parkin and activation of Parkin’s E3 ubiquitin ligase, which decreases the level of mitophagy and leads to failure of cells to effectively remove damaged mitochondria. However, P53 downregulation can effectively reverse this process. Therefore, we upregulated Parkin and downregulated P53 in BMSCs. We found that this significantly enhanced mitophagy in BMSCs, decreased the accumulation of damaged mitochondria in cells, effectively resisted stress-induced BMSCs apoptosis and senescence, and improved the effect of BMSCs transplantation on early steroid-induced ONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China. .,Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jianhua Wu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tao Wang
- Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhihong Xie
- Guizhou Medical University, Guiyang, Guizhou, 550004, China
| |
Collapse
|
21
|
Meng CY, Xue F, Zhao ZQ, Hao T, Guo SB, Feng W. Influence of MicroRNA-141 on Inhibition of the Proliferation of Bone Marrow Mesenchymal Stem Cells in Steroid-Induced Osteonecrosis via SOX11. Orthop Surg 2020; 12:277-285. [PMID: 31916393 PMCID: PMC7031553 DOI: 10.1111/os.12603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate whether miR‐141 and the sex determination region of Y chromosome box 11 (SOX11) play roles in steroid‐induced avascular necrosis of the femoral head (SANFH), and to explore whether miR‐141 could target SOX11 to influence the proliferation of bone marrow mesenchymal stem cells (BMSC). Methods Bone marrow mesenchymal stem cells (BMSC) were isolated and cultured from 4‐week‐old Sprague Dawley rats. A flow cytometry assay was performed to identify BMSC. BMSC were divided into two groups: a control group and a dexamethasone (DEX) group. BMSC were transfected by miR‐141 mimic, miR‐141 inhibitor, and SOX11. Real‐time polymerase chain reaction (PCR) assay was performed to investigate the mRNA expression of miR‐141 and SOX11. The results were used to determine the effect of transfection and to verify the expression in each group and the association between miR‐141 and SOX11. Luciferase reporter assay revealed the targeted binding site between miR‐141 and the 3′‐untranslated region of SOX11 mRNA. MTT assays were performed to investigate the proliferation of BMSC in the miR‐141 mimic, miR‐141 inhibitor, and SOX11 groups. Result The results of the flow cytometry assay suggested that cells were positive for CD29 and CD90 while negative for CD45. This meant that the isolated and cultured cells were not hematopoietic stem cells. In addition, cell transfection was successful based on the expression of miR‐141 and SOX11. According to the results of real‐time PCR assay, the mRNA expression of miR‐141 in SANFH was upregulated (4.117 ± 0.042 vs 1 ± 0.027, P < 0.001), while SOX11 was downregulated (0.611 ± 0.055 vs 1 ± 0.027, P < 0.001) compared with the control group. Based on the results of the luciferase experiment, MiR‐141 could directly target the expression of SOX11. Inhibition of miR‐141 could upregulate the expression of SOX11 (2.623 ± 0.220 vs 1 ± 0.095, P < 0.001) according to the results of a real‐time PCR assay. MiR‐141 inhibited the proliferation of BMSC (0.618 ± 0.092 vs 1.004 ± 0.082, P < 0.001), while suppression of miR‐141 increased the proliferation of BMSC (0.960 ± 0.095 vs 0.742 ± 0.091, P < 0.001). Furthermore, according to the results of the MTT assay, SOX11 promoted the proliferation of BMSC (1.064 ± 0.093 vs 0.747 ± 0.090, P < 0.001). Conclusion MiR‐141 inhibited the proliferation of BMSC in SANFH by targeting SOX11. Inhibition of miR‐141 upregulated the expression of SOX11 and promoted the proliferation of BMSC. MiR‐141 and SOX11 could be new targets for investigating the mechanism of SANFH.
Collapse
Affiliation(s)
- Chen-Yang Meng
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Fei Xue
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhen-Qun Zhao
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Shi-Bing Guo
- Orthopedics Department, Inner Mongolia Institute of Orthopedics, Hohhot, China
| | - Wei Feng
- Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
22
|
Zhang P, Tao F, Li Q, Wu S, Fu B, Liu P. 5-Azacytidine and trichostatin A enhance the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from steroid-induced avascular necrosis of the femoral head in rabbit. J Biosci 2019; 44:87. [PMID: 31502565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) play an important role in the process of bone repair. The present study investigated the effect of 5-azacytidine (AZA) and trichostatin A (TSA) on BMSC behaviors in vitro. The role of WNT family member 5A (WNT5A)/WNT family member 5A (WNT7A)/beta-catenin signaling was also investigated. BMSCs were isolated from a steroid-induced avascular necrosis of the femoral head (SANFH) rabbit model. The third-generation of BMSCs was used after identification. The results revealed obvious degeneration and necrosis in the SANFH rabbit model. AZA, TSA and TSA + AZA increased BMSC proliferation in a time-dependent fashion. AZA, TSA and TSA + AZA induced the cell cycle release from the G0/G1 phase and inhibited apoptosis in BMSCs. AZA, TSA and TSA + AZA treatment significantly decreased caspase-3 and caspase-9 activities. The treatment obviously increased the activity and relative mRNA expression of alkaline phosphatase. The treatment also significantly up-regulated the proteins associated with osteogenic differentiation, including osteocalcin and runt-related transcription factor 2 (RUNX2), and Wnt/beta-catenin signal transduction pathway-related proteins beta-catenin, WNT5A and WNT7A. The relative levels of Dickkopf-related protein 1 (an inhibitor of the canonical Wnt pathway) decreased remarkably. Notably, TSA + AZA treatment exhibited a stronger adjustment ability than either single treatment. Collectively, the present studies suggest that AZA, TSA and TSA + AZA promote cell proliferation and osteogenic differentiation in BMSCs, and these effects are potentially achieved via upregulation of WNT5A/WNT7A/b-catenin signaling.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
5-Azacytidine and trichostatin A enhance the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from steroid-induced avascular necrosis of the femoral head in rabbit. J Biosci 2019. [DOI: 10.1007/s12038-019-9901-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Kao GS, Tu YK, Sung PH, Wang FS, Lu YD, Wu CT, Lin RLC, Yip HK, Lee MS. MicroRNA-mediated interacting circuits predict hypoxia and inhibited osteogenesis of stem cells, and dysregulated angiogenesis are involved in osteonecrosis of the femoral head. INTERNATIONAL ORTHOPAEDICS 2018; 42:1605-1614. [PMID: 29700584 DOI: 10.1007/s00264-018-3895-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) are associated with various pathologic conditions and can serve as diagnostic or therapeutic biomarkers. This study tried to identify the differentially expressed miRNAs to predict the possible pathomechanisms involved in osteonecrosis of the femoral head (ONFH). METHODS We compared the peripheral blood miRNAs in 46 patients with ONFH and 85 healthy controls by microarray and droplet digital polymerase chain reaction (ddPCR). Putative interacted networks between the differentially responded miRNAs were analyzed by web-based bioinformatics prediction tools. RESULTS Microarray identified 51 differentially expressed miRNAs with at least twofold change (upregulation in 34 and downregulation in 17), and the results were validated by ddPCR using six selected miRNAs. Bioinformatics genetic network analysis focusing on the six miRNAs found the upregulated miR-18a and miR-19a are associated with angiogenesis after induction of ischemia; the upregulated miR-138-1 can inhibit osteogenic differentiation of mesenchymal stem cells; the most targeted genes, p53 and SERBP1, are associated with hypoxia and hypofibrinolysis. CONCLUSIONS This study combined the miRNA analysis with the bioinformatics and predicts that hypoxia, inhibited osteogenesis of stem cells, and dysregulated angiogenesis might be orchestrated through the miRNA interacting circuits in the pathogenesis of ONFH.
Collapse
Affiliation(s)
- Gour-Shenq Kao
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, Eda Hospital, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-Der Lu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Chen-Ta Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Rio L C Lin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.
| | - Mel S Lee
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.
| |
Collapse
|
25
|
Zhang H, Zhou F, Pan Z, Bu X, Wang Y, Chen F. 11β-hydroxysteroid dehydrogenases-2 decreases the apoptosis of MC3T3/MLO-Y4 cells induced by glucocorticoids. Biochem Biophys Res Commun 2017; 490:1399-1406. [PMID: 28698139 DOI: 10.1016/j.bbrc.2017.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 12/28/2022]
Abstract
The aim of the present study was to confirm the role of 11β-hydroxysteroid dehydrogenases type 2(11β-HSD-2) in steroid induced osteonecrosis of the femoral head(SANFH). We cultured mouse bone-like cells (MLO-Y4) and mouse osteoblast-like cells (MC3T3-E1). After overexpressed 11β-HSD-2 successfully, we induced cell apoptosis by dexamethasone (DXM). The level of cell apoptosis, the expression of Bcl-2 in MLO-Y4 cells and the expression of Fas and caspase8 in MC3T3-E1 cells were detected. Then, we constructed 11β-HSD-2 siRNA plasmid and represented it on MLO-Y4/MC3T3-E1 Cells, to down-regulate the 11β-HSD-2 expression. After that, we used dexamethasone to induce cell apoptosis. The level of cell apoptosis, the expression of Bcl-2 in MLO-Y4 cells and the expression of Fas and caspase8 in MC3T3-E1 cells were detected again. In the overexpression model of cells, we found that the amount of cell apoptosis, the expression of Fas and caspase8 in MC3T3-E1 cells are lower than that of control groups. The amount of cell apoptosis, the expression of Fas and caspase8 in MC3T3-E1 cells were more than before when we reduced the expression of 11β-HSD-2. In our study, we concluded that 11β-HSD-2 plays an important role in the development of bone or osteoblast cell apoptosis, and the decreased expression of 11β-HSD-2 may aggravate steroid induced bone/osteoblast cell apoptosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Xiangpeng Bu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|