1
|
Mastronikolis S, Kagkelaris K, Pagkalou M, Tsiambas E, Plotas P, Georgakopoulos CD. Antioxidant Defense and Pseudoexfoliation Syndrome: An Updated Review. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10040068. [PMID: 36548003 PMCID: PMC9785126 DOI: 10.3390/medsci10040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress (OS) affects the anterior ocular tissues, rendering them susceptible to several eye diseases. On the other hand, protection of the eye from harmful factors is achieved by unique defense mechanisms, including enzymatic and non-enzymatic antioxidants. The imbalance between oxidants and antioxidants could be the cause of pseudoexfoliation syndrome (PEXS), a condition of defective extracellular matrix (ECM) remodeling. A systematic English-language literature review was conducted from May 2022 to June 2022. The main antioxidant enzymes protecting the eye from reactive oxygen species (ROS) are superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which catalyze the reduction of specific types of ROS. Similarly, non-enzymatic antioxidants such as vitamins A, E and C, carotenoids and glutathione (GSH) are involved in removing ROS from the cells. PEXS is a genetic disease, however, environmental and dietary factors also influence its development. Additionally, many OS products disrupting the ECM remodeling process and modifying the antioxidative defense status could lead to PEXS. This review discusses the antioxidative defense of the eye in association with PEXS, and the intricate link between OS and PEXS. Understanding the pathways of PEXS evolution, and developing new methods to reduce OS, are crucial to control and treat this disease. However, further studies are required to elucidate the molecular pathogenesis of PEXS.
Collapse
Affiliation(s)
- Stylianos Mastronikolis
- Department of Ophthalmology, Medical School, University of Patras, 26504 Patras, Greece
- Department of Neurosurgery, James Cook University Hospital, Middlesbrough TS4 3BW, UK
- Correspondence: (S.M.); (P.P.)
| | | | - Marina Pagkalou
- Department of Chemistry, University of Crete, 71500 Heraklion, Greece
| | | | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece
- Correspondence: (S.M.); (P.P.)
| | | |
Collapse
|
2
|
Mastronikolis S, Pagkalou M, Plotas P, Kagkelaris K, Georgakopoulos C. Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Exp Ther Med 2022; 24:602. [PMID: 35949329 PMCID: PMC9353531 DOI: 10.3892/etm.2022.11539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudoexfoliation syndrome (PEXS) is a systemic disease caused by defects in the extracellular matrix (ECM) remodelling process leading to the chronic deposition of extracellular, fibrillary, white flaky pseudoexfoliation material (PEXM) throughout the body. Specifically, PEXM deposits on the lens capsule cause open-angle glaucoma, cataracts and blindness in patients with PEXS. Several gene single nucleotide polymorphisms are linked to the development of PEXS in humans, including lysyl oxidase-like 1 gene, clusterin and fibulin-5. The exact reason for the PEXM generation and its resulting pathogenesis is not well understood. However, defective ECM remodelling and oxidative stress (OS) have been hypothesized as significant events leading to the PEXM. Specifically, the link between OS and PEXS has been well studied, although the investigation is still ongoing. The present review explored recent advances in various aspects of PEXS and the involvement of OS in the eye for PEXS development.
Collapse
Affiliation(s)
| | - Marina Pagkalou
- Department of Chemistry, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26334 Patras, Greece
| | | | | |
Collapse
|
3
|
Hicks PM, Siedlecki A, Haaland B, Owen LA, Au E, Feehan M, Murtaugh MA, Sieminski S, Reynolds A, Lillvis J, DeAngelis MM. A global genetic epidemiological review of pseudoexfoliation syndrome. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pseudoexfoliation (PXF) syndrome is an important public health concern requiring individual population level analysis. Disease prevalence differs by geographic location and ethnicity, and has environmental, demographic, genetic, and molecular risk factors have been demonstrated. Epidemiological factors that have been associated with PXF include age, sex, environmental factors, and diet. Genetic and molecular components have also been identified that are associated with PXF. Underserved populations are often understudied within scientific research, including research about eye disease such as PXF, contributing to the persistence of health disparities within these populations. In each population, PXF needs may be different, and by having research that identifies individual population needs about PXF, the resources in that population can be more efficiently utilized. Otherwise, PXF intervention and care management based only on the broadest level of understanding may continue to exacerbate health disparities in populations disproportionally burdened by PXF.
Collapse
Affiliation(s)
- Patrice M. Hicks
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Adam Siedlecki
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Benjamin Haaland
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Leah A. Owen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Elizabeth Au
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Michael Feehan
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA;Cerner Enviza, Kansas City, MO 64117, USA
| | - Maureen A. Murtaugh
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sandra Sieminski
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Andrew Reynolds
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - John Lillvis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA;VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Margaret M. DeAngelis
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA;VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
4
|
Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147231. [PMID: 34299682 PMCID: PMC8303577 DOI: 10.3390/ijerph18147231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
The Mayan population of Guatemala is understudied within eye and vision research. Studying an observational homogenous, geographically isolated population of individuals seeking eye care may identify unique clinical, demographic, environmental and genetic risk factors for blinding eye disease that can inform targeted and effective screening strategies to achieve better and improved health care distribution. This study served to: (a) identify the ocular health needs within this population; and (b) identify any possible modifiable risk factors contributing to disease pathophysiology within this population. We conducted a cross-sectional study with 126 participants. Each participant completed a comprehensive eye examination, provided a blood sample for genetic analysis, and received a structured core baseline interview for a standardized epidemiological questionnaire at the Salama Lions Club Eye Hospital in Salama, Guatemala. Interpreters were available for translation to the patients’ native dialect, to assist participants during their visit. We performed a genome-wide association study for ocular disease association on the blood samples using Illumina’s HumanOmni2.5-8 chip to examine single nucleotide polymorphism SNPs in this population. After implementing quality control measures, we performed adjusted logistic regression analysis to determine which genetic and epidemiological factors were associated with eye disease. We found that the most prevalent eye conditions were cataracts (54.8%) followed by pseudoexfoliation syndrome (PXF) (24.6%). The population with both conditions was 22.2%. In our epidemiological analysis, we found that eye disease was significantly associated with advanced age. Cataracts were significantly more common among those living in the 10 districts with the least resources. Furthermore, having cataracts was associated with a greater likelihood of PXF after adjusting for both age and sex. In our genetic analysis, the SNP most nominally significantly associated with PXF lay within the gene KSR2 (p < 1 × 10−5). Several SNPs were associated with cataracts at genome-wide significance after adjusting for covariates (p < 5 × 10−8). About seventy five percent of the 33 cataract-associated SNPs lie within 13 genes, with the majority of genes having only one significant SNP (5 × 10−8). Using bioinformatic tools including PhenGenI, the Ensembl genome browser and literature review, these SNPs and genes have not previously been associated with PXF or cataracts, separately or in combination. This study can aid in understanding the prevalence of eye conditions in this population to better help inform public health planning and the delivery of quality, accessible, and relevant health and preventative care within Salama, Guatemala.
Collapse
|
5
|
Ghaffari Sharaf M, Damji KF, Unsworth LD. Recent advances in risk factors associated with ocular exfoliation syndrome. Acta Ophthalmol 2020; 98:113-120. [PMID: 31736276 DOI: 10.1111/aos.14298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Exfoliation syndrome is generally considered a progressive age-related systemic disorder of the extracellular matrix, which is clinically characterized through the observation of flaky white aggregates on ocular tissues. Exfoliation syndrome is directly linked to exfoliative glaucoma in elderly patients, where it is known as the most common identifiable cause of open-angle glaucoma. Despite the identification of various risk factors associated with exfoliation syndrome, the exact pathogenesis of this syndrome has not been fully elucidated. There is a growing number of genome-wide association studies in different populations around the world to identify genetic factors underlying exfoliation syndrome. Besides variants in LOXL1 and CACNA1A genes, new loci have been recently identified which are believed to be associated with exfoliation syndrome. Among different genetic factors, functional variants might help to better understand mechanisms underlying this systemic disorder. Besides genetic factors, epigenetic regulation of different gene expression patterns has been thought to play a role in its pathogenesis. Other factors have been also considered to be involved in the development of exfoliation syndrome at cellular organelles level where mitochondrial impairment and autophagy dysfunction have been suggested in relation to exfoliation syndrome. This review addresses the most recent findings on genetic factors as well as cellular and molecular mechanisms involved in both the development and progression of exfoliation syndrome.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Karim F. Damji
- Department of Ophthalmology and Visual Sciences University of Alberta Edmonton Alberta Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
6
|
Zeng B, Ge C, Li R, Zhang Z, Fu Q, Li Z, Lin Z, Liu L, Xue Y, Xu Y, He J, Guo H, Li C, Huang W, Song X, Huang Y. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed Pharmacother 2020; 121:109562. [DOI: 10.1016/j.biopha.2019.109562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
|