1
|
Ding W, Li R, Song T, Yang Z, Xu D, Huang C, Shen S, Zhong N, Lai K, Deng Z. AMG487 alleviates influenza A (H1N1) virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes and IFN-γ concentrations. Br J Pharmacol 2024; 181:2053-2069. [PMID: 38500396 DOI: 10.1111/bph.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Severe influenza virus-infected patients have high systemic levels of Th1 cytokines (including IFN-γ). Intrapulmonary IFN-γ increases pulmonary IFN-γ-producing T lymphocytes through the CXCR3 pathway. Virus-infected mice lacking IP-10/CXCR3 demonstrate lower pulmonary neutrophilic inflammation. AMG487, an IP-10/CXCR3 antagonist, ameliorates virus-induced lung injury in vivo through decreasing viral loads. This study examined whether AMG487 could treat H1N1 virus-induced mouse illness through reducing viral loads or decreasing the number of lymphocytes or neutrophils. EXPERIMENTAL APPROACH Here, we studied the above-mentioned effects and underlying mechanisms in vivo. KEY RESULTS H1N1 virus infection caused bad overall condition and pulmonary inflammation characterized by the infiltration of lymphocytes and neutrophils. From Day-5 to Day-10 post-virus infection, bad overall condition, pulmonary lymphocytes, and IFN-γ concentrations increased, while pulmonary H1N1 viral titres and neutrophils decreased. Both anti-IFN-γ and AMG487 alleviated virus infection-induced bad overall condition and pulmonary lymphocytic inflammation. Pulmonary neutrophilic inflammation was mitigated by AMG487 on Day-5 post-infection, but was not mitigated by AMG487 on Day-10 post-infection. H1N1 virus induced increases of IFN-γ, IP-10, and IFN-γ-producing lymphocytes and activation of the Jak2-Stat1 pathways in mouse lungs, which were inhibited by AMG487. Anti-IFN-γ decreased IFN-γ and IFN-γ-producing lymphocytes on Day-5 post-infection. AMG487 but not anti-IFN-γ decreased viral titres in mouse lung homogenates or BALF. Higher virus load did not increase pulmonary inflammation and IFN-γ concentrations when mice were treated with AMG487. CONCLUSION AND IMPLICATIONS AMG487 may ameliorate H1N1 virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes rather than reducing viral loads or neutrophils.
Collapse
Affiliation(s)
- Wenbin Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tongtong Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuirong Shen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Hu X, Sun X, Zhao Y, Iv C, Sun X, Jin M, Zhang Q. GlcNac produced by the gut microbiome enhances host influenza resistance by modulating NK cells. Gut Microbes 2023; 15:2271620. [PMID: 37953509 PMCID: PMC10730189 DOI: 10.1080/19490976.2023.2271620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Microbiota are known to modulate the host response to influenza infection, but the mechanisms remain largely unknown. Gut metabolites are the key mediators through which gut microbes play anti-influenza effect. Transferring fecal metabolites from mice with high influenza resistance into antibiotic-treated recipient mice conferred resistance to influenza infections. By comparing the metabolites of different individuals with high or low influenza resistance, we identified and validated N-acetyl-D-glucosamine (GlcNAc) and adenosine showed strong positive correlations with influenza resistance and exerted anti-influenza effects in vivo or in vitro, respectively. Especially, GlcNAc mediated the anti-influenza effect by increasing the proportion and activity of NK cells. Several gut microbes, including Clostridium sp., Phocaeicola sartorii, and Akkermansia muciniphila, were positively correlated with influenza resistance, and can upregulate the level of GlcNAc in the mouse gut by exogenous supplementation. Subsequent studies confirmed that administering a combination of the three bacteria to mice via gavage resulted in similar modulation of NK cell responses as observed with GlcNAc. This study demonstrates that gut microbe-produced GlcNAc protects the host against influenza by regulating NK cells, facilitating the elucidation of the action mechanism of gut microbes mediating host influenza resistance.
Collapse
Affiliation(s)
- Xiaotong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xiaolu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Changjie Iv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- Emerging Disease Research Center, Keqian Institute of Biology, Keqian Biological Co. Ltd, Wuhan, China
| | - Qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University and Hubei jiangxia Laboratory, Wuhan, China
| |
Collapse
|
3
|
Ruohtula T, Kondrashova A, Lehtonen J, Oikarinen S, Hämäläinen AM, Niemelä O, Peet A, Tillmann V, Nieminen JK, Ilonen J, Knip M, Vaarala O, Hyöty H. Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life. Front Immunol 2021; 11:567046. [PMID: 33643278 PMCID: PMC7905218 DOI: 10.3389/fimmu.2020.567046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Early childhood infections have been implicated in the development of immune-mediated diseases, such as allergies, asthma, and type 1 diabetes. We set out to investigate the immunomodulatory effects of early viral infections experienced before the age of one year on the peripheral regulatory T cell population (Treg) and circulating cytokines in a birth-cohort study of Estonian and Finnish infants. We show here a temporal association of virus infection with the expression of FOXP3 in regulatory T cells. Infants with rhinovirus infection during the preceding 30 days had a higher FOXP3 expression in Treg cells and decreased levels of several cytokines related to Th1 and Th2 responses in comparison to the children without infections. In contrast, FOXP3 expression was significantly decreased in highly activated (CD4+CD127-/loCD25+FOXP3high) regulatory T cells (TregFOXP3high) in the infants who had enterovirus infection during the preceding 30 or 60 days. After enterovirus infections, the cytokine profile showed an upregulation of Th1- and Th17-related cytokines and a decreased activation of CCL22, which is a chemokine derived from dendritic cells and associated with Th2 deviation. Our results reveal that immunoregulatory mechanisms are up-regulated after rhinovirus infections, while enterovirus infections are associated with activation of proinflammatory pathways and decreased immune regulation.
Collapse
Affiliation(s)
| | - Anita Kondrashova
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu-Maaria Hämäläinen
- Department of Pediatrics, Jorvi Hospital, Helsinki University Hospital, Espoo, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Janne K Nieminen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Outi Vaarala
- Clinicum, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | |
Collapse
|
4
|
Li YH, Hu CY, Cheng LF, Wu XX, Weng TH, Wu NP, Yao HP, Li LJ. Highly pathogenic H7N9 avian influenza virus infection associated with up-regulation of PD-1/PD-Ls pathway-related molecules. Int Immunopharmacol 2020; 85:106558. [PMID: 32450532 DOI: 10.1016/j.intimp.2020.106558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 11/25/2022]
Abstract
To investigate the main transcriptional and biological changes of human host during low and highly pathogenic avian H7N9 influenza virus infection and to analyze the possible causes of escalated virulence and the systematic progression of H7N9 virus infection, we utilized whole transcriptome sequencing (RNA-chip and RNA-seq) and other biomolecular methods to analyze and verify remarkable changes of host cells during these two subtypes of H7N9 influenza viruses infection. Whole transcriptome analysis showed the global profiles of differentially expressed genes (DEGs) and identified 458 DEGs associated with major changes in biological processes of the host cells after infection with 2017 HPAI H7N9 virus versus 2013 LPAI H7N9 virus, mainly including drastically increased defense responses to viruses (e.g. negative regulation of viral gene replication), IFNs related pathways, immune response/native immune response, and inflammatory response. Genes of programmed cell death 1 (PD-1) pathways were found changed remarkably and several highly correlated non-coding RNAs were identified. The results suggested that HPAI H7N9 virus induces stronger immune response and suppressing response than LPAI H7N9. Meanwhile, PD-1/PD-Ls signaling pathways work together in regulating host responses including antiviral defense, lethal inflammation caused by the virus and immune response, thus contribute to the high pathogenicity of 2017H7N9 virus that can be regulated by non-coding RNAs. The present study represents a comprehensive understanding and good reference of regulation of pathogenicity of H7N9 virus even other fatal viruses and correlated host immune responses.
Collapse
Affiliation(s)
- Yan Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Chen Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Lin Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Xiao Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Tian Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Nan Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Hang Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China.
| | - Lan Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310031, China.
| |
Collapse
|
5
|
Decreased Frequencies of Th17 and Tc17 Cells in Patients Infected with Avian Influenza A (H7N9) Virus. J Immunol Res 2019; 2019:1418251. [PMID: 31061831 PMCID: PMC6466882 DOI: 10.1155/2019/1418251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/24/2023] Open
Abstract
The outbreak of avian influenza A (H7N9) virus infection, with a high mortality rate, has caused concern worldwide. Although interleukin-17- (IL-17-) secreting CD4+ T (Th17) and CD8+ T (Tc17) cells have been proven to play crucial roles in influenza virus infection, the changes and roles of Th17 and Tc17 cells in immune responses to H7N9 infection remain controversial. In this study, we found that the frequencies of Th17 and Tc17 cells among human peripheral blood mononuclear cells (PBMCs) as well as IL-17A protein and mRNA levels were markedly decreased in patients with acute H7N9 virus infection. A positive correlation was found between the serum IL-17A level and the frequency of these two cell groups. In vitro infection experiments revealed decreased Th17 and Tc17 cell frequency and IL-17A levels at various time points postinfection. In addition, Th17 cells were the predominant sources of IL-17A in PBMCs of patients infected with H7N9 virus. Taken together, our results indicate immune disorder in acute H7N9 infection and a restored Th17 and Tc17 cell frequency might serve as a biomarker for predicting recovery in patients infected with this virus.
Collapse
|
6
|
Rogers MC, Williams JV. Quis Custodiet Ipsos Custodes? Regulation of Cell-Mediated Immune Responses Following Viral Lung Infections. Annu Rev Virol 2018; 5:363-383. [PMID: 30052492 DOI: 10.1146/annurev-virology-092917-043515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral lung infections are leading causes of morbidity and mortality. Effective immune responses to these infections require precise immune regulation to preserve lung function after viral clearance. One component of airway pathophysiology and lung injury associated with acute respiratory virus infection is effector T cells, yet these are the primary cells required for viral clearance. Accordingly, multiple immune mechanisms exist to regulate effector T cells, limiting immunopathology while permitting clearance of infection. Much has been learned in recent years about regulation of T cell function during chronic infection and cancer, and it is now clear that many of these mechanisms also control inflammation in acute lung infection. In this review, we focus on regulatory T cells, inhibitory receptors, and other cells and molecules that regulate cell-mediated immunity in the context of acute respiratory virus infection.
Collapse
Affiliation(s)
- Meredith C Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, USA;
| |
Collapse
|