1
|
Apatzidou DA, Violesti A, Konstantinidis A, Bao K, Silbereisen A, Bostanci N. Protein profile at newly restored implants compared to contralateral teeth over 12-months: a pilot study. Clin Oral Investig 2024; 28:590. [PMID: 39390228 DOI: 10.1007/s00784-024-05984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVES To determine crevicular fluid alterations in protein expression of newly restored implants during their first year of function and associate them with those of contralateral teeth. MATERIALS AND METHODS In ten non-smokers, successfully treated for periodontitis, one newly restored implant (baseline-T0) and one corresponding tooth were followed for 12-months (T1). Oral hygiene was monitored during the study. Periodontal clinical indices and crevicular fluid were collected from an implant-site (PICF) and a tooth-site (GCF). Total proteomic profiles of PICF and GCF were investigated using label-free quantitative proteomics. RESULTS Clinical recordings remained stable at 12-months on the tooth-/implant-site basis. The comparative analysis of protein enrichment between teeth and implants at T0 revealed 664 human proteins, with 93 found only in teeth and 217 exclusively in implants. Among the 354 overlapping proteins, 46 were upregulated (log2FC > 1) in teeth, while 61 in implants. At T1, 569 human proteins were exclusively identified, with 67 found only in teeth and 193 exclusively in implants. Of the 309 overlapping proteins, 22 were upregulated in teeth, while 48 were in implants. The over-representation enrichment analysis identified "interferon-alpha response" and "allograft rejection" pathways, as significantly regulated categories at T0, with the latter being over-represented at T1. CONCLUSIONS Peri-implant tissue maturation was evident during the study. Proteins expressed in crevicular fluid reflected unique patterns between implants and teeth that are worth studying. CLINICAL RELEVANCE Different proteomic patterns were observed at the implant-site compared to the contralateral tooth-site towards inflammatory processes that prevail within otherwise clinically healthy peri-implant tissues. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov ID: NCT06379022.
Collapse
Affiliation(s)
- Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Anastasia Violesti
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Khan MM, Ali SA, Qazi Y, Khan SW, shaikh MA. Anti-inflammatory effects of Chrozophora plicata uncovered using network pharmacology and in-vivo carrageenan paw edema model. Heliyon 2024; 10:e24617. [PMID: 38371966 PMCID: PMC10873672 DOI: 10.1016/j.heliyon.2024.e24617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Chrozophora plicata has been extensively utilized in India for the management of numerous disorders. The effective Phytoconstituents derived from the Ethyl Acetate Fraction of Chrozophora plicata [EAFCP] have been identified as Camptothecin Agathisflavone, Rutin, Procynidine B, and Apigenin. These Phytoconstituents have been detected in the EAFCP through qualitative analysis using LC-Q-TOF-MS/MS. The anti-inflammatory properties of Chrozophora plicata are yet to be determined. Therefore, the aim of this study was to utilize a network pharmacology-based methodology to predict potential therapeutic targets of EAFCP in the setting of inflammation. The identification of inflammation targets was followed by the acquisition of verified targets of EAFCP. The key therapeutic targets of EAFCP against inflammation were found by creating a target-functional PPI network, GO studies were conducted on the core therapeutic targets in order to assess the essential signalling pathways involved in the anti-inflammatory effects of EAFCP. A total of 38 significant hub targets associated with EAFCP's anti-inflammatory effects were identified. The key proteins were retrieved for the docking investigation based on the findings, which aided in anticipating the potential interaction between components and targets. The in vivo study revealed that EAFCP had a notable efficiency in decreasing paw edema induced by carrageenan in rats. The evidence we have gathered collectively offers clarification about the anti-inflammatory activity of EAFCP, which is predominantly linked to the suppression of the Cox 1, 2 pathway. The aforementioned findings highlight potential therapeutic targets that could be utilized for the anti-inflammatory activity of EAFCP.
Collapse
Affiliation(s)
- Mohd Mukhtar Khan
- Department of Pharmacology, Y.B Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Y.B Chavan College of Pharmacy, Dr Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Syed Ayaz Ali
- Department of Pharmacology, Y.B Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Y.B Chavan College of Pharmacy, Dr Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Yasar Qazi
- Department of Chemistry, Y.B Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Y.B Chavan College of Pharmacy, Dr Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Subur W. Khan
- Department of Pharmacognosy, Y.B Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Y.B Chavan College of Pharmacy, Dr Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Md Affan shaikh
- Department of Chemistry, Y.B Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- Y.B Chavan College of Pharmacy, Dr Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| |
Collapse
|
3
|
Chmielewski M, Pilloni A. Current Molecular, Cellular and Genetic Aspects of Peri-Implantitis Disease: A Narrative Review. Dent J (Basel) 2023; 11:dj11050134. [PMID: 37232785 DOI: 10.3390/dj11050134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
(1) Background: Peri-implantitis is a multi-factorial disease with an inflammatory background that occurs in both soft and hard tissues surrounding implants. In recent years, the understanding of the cellular, molecular and genetic background of peri-implantitis has broadened. This study aims to summarize the currently available articles on the subject and highlight the most recent advances over the last 20 years. (2) Methods: For this study, the Embase and PubMed libraries were searched using the keywords: ("peri-implantitis" AND "cytokine" OR "genetics" OR "cellular") and ("peri-implantitis" AND "cytokine" OR "genetics" OR "cellular" AND "risk factors"). The search revealed a total of 3013 articles (992 from PubMed, 2021 from Embase). Following screening of the titles and abstracts and full-text reads, 55 articles were included. (3) Results: In peri-implantitis IL-6, IL-1β, TNF-α, MMP-8 and their genetic variations appear to be the most important cytokines in relation to not only pathogenesis, but also their potential diagnostic capabilities. Epithelial and inflammatory cells, along with those of the bone lineage, are prime cellular elements found in peri-implantitis. (4) Conclusions: A wide array of cells stand behind peri-implantitis, as well as cytokines and their genetic variations that take part in the process. However, the growing interest in this topic has led to the introduction of specific new diagnostic tools to enable a better understanding of patients' responses to treatment and, in turn, to even enable prediction of the risk of developing peri-implant disease.
Collapse
Affiliation(s)
| | - Andrea Pilloni
- Section of Periodontics, Department of Oral and Maxillo-Facial Sciences, Sapienza Unviersity of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Zhang H, Huang J, Fan X, Miao R, Wang Y. HSP90AA1 promotes the inflammation in human gingival fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide via regulating of autophagy. BMC Oral Health 2022; 22:366. [PMID: 36028869 PMCID: PMC9419417 DOI: 10.1186/s12903-022-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peri-implantitis of tooth seriously affects the life quality of patients. This study aimed to investigate the role of HSP90AA1 in the inflammatory of human gingival fibroblasts (HGFs) induced by porphyromonas gingivalis lipopolysaccharide (Pg-LPS), and to provide a potential therapeutic target for clinical treatment of peri-implantitis. METHODS Pg-LPS (0.1, 1, 10 μg/mL) was used to construct the inflammatory model of HGFs to evaluate the effect of Pg-LPS on HGFs. Then HSP90AA1-siRNA was transfected to construct HSP90AA1 low expression HGFs cell line, and 3-MA was also added. After that, cell viability, apoptosis, the contents of inflammatory cytokines were detected by CCK-8, flow cytometry and ELISA assay, respectively. Intracellular ROS, the expressions of HSP90α, HSP90β were detected by immunofluorescence. The levels of HSP90AA1, p-NF-κB p65/NF-κB p65, LC3 II/I, ATG5, Beclin-1 and TLR protein were detected by western blot. RESULTS Pg-LPS treatment didn't affect the viability of HGFs cells, but induced the cell apoptosis and ROS generation, increased the contents of IL-1β, IL-6, TNF-α, and the protein expressions of HSP90AA1, p-NF-κBp65/NF-κBp65, LC3II/I, ATG5, and Beclin-1 in HGFs. While HSP90AA1-siRNA transfected into Pg-LPS induced HGFs significantly reduced the HSP90AA1, HSP90α, HSP90β expression, decreased the inflammatory factors, ROS generation, cell apoptosis rate, and autophagy-related proteins and TLR2/4 protein levels. What's more, the addition of autophagy inhibitor 3-MA further promote the effect of HSP90AA1-siRNA on Pg-LPS treated HGFs. CONCLUSIONS This study showed that HSP90AA1 promoted the inflammatory response of Pg-LPS induced HGFs by regulating autophagy. The addition of 3-MA further confirmed that autophagy may mediate siHSP90AA1 to enhance the inflammatory response.
Collapse
Affiliation(s)
- Huang Zhang
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - Jie Huang
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - XuSheng Fan
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - RuiJing Miao
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province
| | - YongWu Wang
- Department of Stomatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China, Zhejiang Province.
| |
Collapse
|
5
|
Hassani B, Mollanoori H, Pouresmaeili F, Asgari Y, Ghafouri-Fard S. Constructing mRNA, miRNA, circRNA and lncRNA regulatory network by Analysis of microarray data in breast cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Analysis of primary metabolites of Morchella fruit bodies and mycelium based on widely targeted metabolomics. Arch Microbiol 2021; 204:98. [DOI: 10.1007/s00203-021-02612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022]
|
7
|
Hassani B, Taheri M, Asgari Y, Zekri A, Sattari A, Ghafouri-Fard S, Pouresmaeili F. Expression Analysis of Long Non-Coding RNAs Related With FOXM1, GATA3, FOXA1 and ESR1 in Breast Tissues. Front Oncol 2021; 11:671418. [PMID: 34094972 PMCID: PMC8171254 DOI: 10.3389/fonc.2021.671418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common neoplasm among females. Estrogen receptor (ESR) signaling has a prominent impact in the pathogenesis of breast cancer. Among the transcription factors associated with ESR signaling, FOXM1, GATA3, FOXA1 and ESR1 have been suggested as a candidate in the pathogenesis of this neoplasm. In the current project, we have designed an in silico approach to find long non-coding RNAs (lncRNAs) that regulate these transcription factors. Then, we used clinical samples to carry out validation of our in silico findings. Our systems biology method led to the identification of APTR, AC144450.1, linc00663, ZNF337.AS1, and RAMP2.AS1 lncRNAs. Subsequently, we assessed the expression of these genes in breast cancer tissues compared with the adjacent non-cancerous tissues (ANCTs). Expression of GATA3 was significantly higher in breast cancer tissues compared with ANCTs (Ratio of mean expressions (RME) = 4.99, P value = 3.12E−04). Moreover, expression levels of APTR, AC144450.1, and ZNF337.AS1 were elevated in breast cancer tissues compared with control tissues (RME = 2.27, P value = 5.40E−03; Ratio of mean expressions = 615.95, P value = 7.39E−19 and RME = 1.78, P value = 3.40E−02, respectively). On the other hand, the expression of RAMP2.AS1 was lower in breast cancer tissues than controls (RME = 0.31, P value = 1.87E−03). Expression levels of FOXA1, ESR1, and FOXM1 and linc00663 were not significantly different between the two sets of samples. Expression of GATA3 was significantly associated with stage (P value = 4.77E−02). Moreover, expressions of FOXA1 and RAMP2.AS1 were associated with the mitotic rate (P values = 2.18E−02 and 1.77E−02, respectively). Finally, expressions of FOXM1 and ZNF337.AS1 were associated with breastfeeding duration (P values = 3.88E−02 and 4.33E−02, respectively). Based on the area under receiver operating characteristics curves, AC144450.1 had the optimal diagnostic power in differentiating between cancerous and non-cancerous tissues (AUC = 0.95, Sensitivity = 0.90, Specificity = 0.96). The combination of expression levels of all genes slightly increased the diagnostic power (AUC = 0.96). While there were several significant pairwise correlations between expression levels of genes in non-tumoral tissues, the most robust correlation was identified between linc00663 and RAMP2.AS1 (r = 0.61, P value = 3.08E−8). In the breast cancer tissues, the strongest correlations were reported between FOXM1/ZNF337.AS1 and FOXM1/RAMP2.AS1 pairs (r = 0.51, P value = 4.79E−5 and r = 0.51, P value = 6.39E−5, respectively). The current investigation suggests future assessment of the functional role of APTR, AC144450.1 and ZNF337.AS1 in the development of breast neoplasms.
Collapse
Affiliation(s)
- Bita Hassani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sattari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Fragkioudakis I, Tseleki G, Doufexi AE, Sakellari D. Current Concepts on the Pathogenesis of Peri-implantitis: A Narrative Review. Eur J Dent 2021; 15:379-387. [PMID: 33742426 PMCID: PMC8184306 DOI: 10.1055/s-0040-1721903] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As implant treatment has been integrated in contemporary dental practice, complications with the forms of peri-implant mucositis and peri-implantitis have also increased in prevalence. Peri-implantitis is the more severe biological complication and is defined as an inflammatory disease affecting peri-implant tissues resulting in bone and eventually implant loss. In addition, the treatment of peri-implantitis has currently become a substantial global economic burden. In the current study, a search was conducted in several electronic databases using specific keywords relevant to the article's main topic. An increasing number of scientific reports have investigated the etiopathology of peri-implant diseases, focusing mainly on peri-implantitis. Microbial biofilm consists an important etiological factor of peri-implant pathology analogous to periodontal diseases. Although several data confirm that peri-implant infections are dominated by gram-negative bacteria, similar to periodontal infections, there is evidence that some cases may harbor a distinct microbiota, including opportunistic microorganisms and/or uncultivable species. Additionally, data support that several parameters, such as genetic predisposition of individual patients, occlusal overload, and local factors such as titanium particles and excess cement, may be implicated in peri-implantitis pathogenesis. Simultaneously, the release of titanium metal particles and their biological consequences or the presence of excess cement in the adjacent peri-implant tissues have also been suggested as factors that contribute to peri-implant pathology. A specific line of research also indicates the role of foreign body response to implant installation. This narrative review aims to discuss the current concepts of etiopathogenetic factors implicated in peri-implantitis.
Collapse
Affiliation(s)
- Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tseleki
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini-Elisavet Doufexi
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Zhou X, Wu D, Liang D, Zhang W, Shi Q, Cao Y. Evaluation of modified cold‐atmospheric pressure plasma (MCAP) for the treatment of peri‐implantitis in beagles. Oral Dis 2020; 28:495-502. [PMID: 33320400 DOI: 10.1111/odi.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Xincai Zhou
- Department of Stomatology Baoan Maternal and Child Health Hospital Jinan University Shenzhen China
| | - Donglei Wu
- Department of Stomatology Baoan Maternal and Child Health Hospital Jinan University Shenzhen China
| | - Defeng Liang
- Department of Stomatology Baoan Maternal and Child Health Hospital Jinan University Shenzhen China
| | - Wenhao Zhang
- Department of Stomatology Baoan Maternal and Child Health Hospital Jinan University Shenzhen China
| | - Qi Shi
- Department of Stomatology Baoan Maternal and Child Health Hospital Jinan University Shenzhen China
- Department of Stomatology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yingguang Cao
- Department of Stomatology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
10
|
Levels of Gene Expression of Immunological Biomarkers in Peri-Implant and Periodontal Tissues. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239100. [PMID: 33291232 PMCID: PMC7730812 DOI: 10.3390/ijerph17239100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
This study compared the gene expression of the immunoinflammatory markers interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α), the matrix metalloproteinases (MMP)-1, -2, -8, and -9, and the tissue inhibitors of matrix metalloproteases (TIMP)-1 and -2 in the gingival tissue of individuals with periodontal and peri-implant disease. The study population included individuals with four periodontal statuses: periodontal health (PH group, n = 20); periodontitis (P group, n = 20); peri-implant health (PIH group, n = 20), and peri-implantitis (PI group, n = 20). Gingival biopsies were collected from one tooth per patient according to the inclusion criteria of each group. The mRNA levels of IL-6, IL-1ß, TNF-α, MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 were evaluated by qPCR. The levels of IL-1ß were significantly higher in the PI group when compared to the other groups (p < 0.05), while the levels of IL-6 were significantly higher in the groups with periodontal and peri-implant disease when compared with the healthy groups (p < 0.05); however, the levels of IL-6 did not differ between the PI and P groups (p > 0.05). For all other studied biomarkers, no significant differences were observed between groups (p > 0.05). IL-6 and IL-1ß presented higher levels of mRNA in diseased periodontal and peri-implant tissues. However, the expression of metalloproteinases and their inhibitors did not differ between the different periodontal statuses.
Collapse
|
11
|
Abstract
Osseointegrated dental implants are a revolutionary tool in the armament of reconstructive dentistry, employed to replace missing teeth and restore masticatory, occlusal, and esthetic functions. Like natural teeth, the orally exposed part of dental implants offers a pristine nonshedding surface for salivary pellicle-mediated microbial adhesion and biofilm formation. In early colonization stages, these bacterial communities closely resemble those of healthy periodontal sites, with lower diversity. Because the peri-implant tissues are more susceptible to endogenous oral infections, understanding of the ecological triggers that underpin the microbial pathogenesis of peri-implantitis is central to developing improved prevention, diagnosis, and therapeutic strategies. The advent of next-generation sequencing (NGS) technologies, notably applied to 16S ribosomal RNA gene amplicons, has enabled the comprehensive taxonomic characterization of peri-implant bacterial communities in health and disease, revealing a differentially abundant microbiota between these 2 states, or with periodontitis. With that, the peri-implant niche is highlighted as a distinct ecosystem that shapes its individual resident microbial community. Shifts from health to disease include an increase in diversity and a gradual depletion of commensals, along with an enrichment of classical and emerging periodontal pathogens. Metatranscriptomic profiling revealed similarities in the virulence characteristics of microbial communities from peri-implantitis and periodontitis, nonetheless with some distinctive pathways and interbacterial networks. Deeper functional assessment of the physiology and virulence of the well-characterized microbial communities of the peri-implant niche will elucidate further the etiopathogenic mechanisms and drivers of the disease.
Collapse
Affiliation(s)
- G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - D Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
12
|
A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease. Sci Rep 2019; 9:18314. [PMID: 31797949 PMCID: PMC6892882 DOI: 10.1038/s41598-019-54603-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023] Open
Abstract
Circular RNAs (circRNAs) are involved in many physiological functions. Whether circulating circRNAs serve as markers for coronary artery disease (CAD) is unknown. Seven CAD-related microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database and were analyzed using clustering and functional enrichment to identify hub mRNAs and miRNAs. StarBase V3.0 and circinteractome databases were used to predict interactions between circRNAs and miRNAs whereas miRwalk and DIANA TOOLS were used to predict interactions between miRNAs and mRNAs. Altogether, this helped establish a circRNA-miRNA-mRNA triple network for diagnosis of CAD. Five non-coding RNAs (ncRNAs) were identified in our study population with the use of quantitative real-time PCR (RT-PCR). The prognostic values of circYOD1, hsa-miR-21-3p and hsa-miR-296-3p were evaluated using a receiver operating characteristic (ROC) curve. A CAD circRNA-miRNA-mRNA network was established from our analyses containing one circRNA, four miRNAs and thirteen mRNAs. After performing RT-PCR validation between CAD and non-CAD samples, only three ncRNAs of five ncRNAs showed significance for further analysis. The area under ROC curve (AUC) of circ-YOD1 was 0.824, the AUC of hsa-miR-21-3p was 0.731 and hsa-miR-296-3p was 0.776. The pairwise comparison results showed that circ-YOD1 had statistical significance (PYOD1-21 < 0.01 and PYOD1-296 < 0.05). The results of functional enrichment analysis of interacting genes and microRNAs showed that the shared circ-YOD1 may act as a new biomarker for CAD. Our investigation of the triple regulatory networks of circRNA-miRNA-mRNA in CAD revealed circ-YOD1 as a potential biomarker for CAD.
Collapse
|
13
|
Yu T, Acharya A, Mattheos N, Li S, Ziebolz D, Schmalz G, Haak R, Schmidt J, Sun Y. Molecular mechanisms linking peri-implantitis and type 2 diabetes mellitus revealed by transcriptomic analysis. PeerJ 2019; 7:e7124. [PMID: 31275749 PMCID: PMC6590641 DOI: 10.7717/peerj.7124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Aims To explore molecular mechanisms that link peri-implantitis and type 2 diabetes mellitus (T2DM) by bioinformatic analysis of publicly available experimental transcriptomic data. Materials and methods Gene expression data from peri-implantitis were downloaded from the Gene Expression Omnibus database, integrated and differentially expressed genes (DEGs) in peri-implantitis were identified. Next, experimentally validated and computationally predicted genes related to T2DM were downloaded from the DisGeNET database. Protein–protein interaction network (PPI) pairs of DEGs related to peri-implantitis and T2DM related genes were constructed, “hub” genes and overlapping DEG were determined. Functional enrichment analysis was used to identify significant shared biological processes and signaling pathways. The PPI networks were subjected to cluster and specific class analysis for identifying “leader” genes. Module network analysis of the merged PPI network identified common or cross-talk genes connecting the two networks. Results A total of 92 DEGs overlapped between peri-implantitis and T2DM datasets. Three hub genes (IL-6, NFKB1, and PIK3CG) had the highest degree in PPI networks of both peri-implantitis and T2DM. Three leader genes (PSMD10, SOS1, WASF3), eight cross-talk genes (PSMD10, PSMD6, EIF2S1, GSTP1, DNAJC3, SEC61A1, MAPT, and NME1), and one signaling pathway (IL-17 signaling) emerged as peri-implantitis and T2DM linkage mechanisms. Conclusions Exploration of available transcriptomic datasets revealed IL-6, NFKB1, and PIK3CG expression along with the IL-17 signaling pathway as top candidate molecular linkage mechanisms between peri-implantitis and T2DM.
Collapse
Affiliation(s)
- Tianliang Yu
- Department of Prosthodontics, School of Dentistry, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aneesha Acharya
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China.,Dr D Y Patil Dental College and Hospital, Pimpri, Pune, India
| | - Nikos Mattheos
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Saxon, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Saxon, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Saxon, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Saxon, Germany
| | - Jana Schmidt
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Saxon, Germany
| | - Yu Sun
- Department of Prosthodontics, School of Dentistry, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Miao L, Yin RX, Zhang QH, Hu XJ, Huang F, Chen WX, Cao XL, Wu JZ. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA TWF1 as an important regulator of miRNA and gene expression in coronary artery disease. Nutr Metab (Lond) 2019; 16:39. [PMID: 31182968 PMCID: PMC6555741 DOI: 10.1186/s12986-019-0366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are involved in numerous physiological functions. Yet, their mechanisms in coronary artery disease (CAD) are not well understood. Methods The expression profile of genes associated to CAD was reannotated into the lncRNA-mRNA biphasic profile. The target microRNA data were used to design a global CAD triple network. Thereafter, we conducted a functional enrichment analysis and clustering using the triple network from the level of topology analyses. The expression of four non-coding RNAs (ncRNAs) was measured by qRT-PCR and the risk of CAD was calculated by nomogram. The prognostic value of three ncRNAs was evaluated using receiver operating characteristic (ROC) curve. Results A CAD lncRNA-miRNA-mRNA network was constructed which included 15 mRNAs, 3 miRNAs, 19 edges and one lncRNA. Nomogram showed that four ncRNAs were the risk of CAD. After RT-PCR validation in four ncRNAs between CAD and non-CAD samples, only three ncRNAs had significant meaning for further analysis. ROC curve showed that TWF1 presented an area under curve (AUC) of 0.862, the AUC of hsa -miR-142-3p was 0.856 and hsa -miR126-5p was 0.822. After the pairwise comparison, we found that TWF1 had significant statistical significance (P TWF1-142 < 0.05 and P TWF1-126 < 0.01). The results of functional enrichment analysis of interacting gene and microRNA showed that the shared lncRNA TWF1 may be a new factor for CAD. Conclusions This investigation on the regulatory networks of lncRNA-miRNA-mRNA in CAD suggests that a novel lncRNA, lncRNA TWF1 is a risk factor for CAD, and expands our understanding into the mechanisms involved in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Liu Miao
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Rui-Xing Yin
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Qing-Hui Zhang
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Xi-Jiang Hu
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Feng Huang
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Wu-Xian Chen
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Xiao-Li Cao
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China.,4Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| | - Jin-Zhen Wu
- 1Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People's Republic of China
| |
Collapse
|
15
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|