1
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
2
|
Lourenço CM, Sallum JMF, Pereira AM, Girotto PN, Kok F, Vilela DRF, Barron E, Pessoa A, Oliveira BMD. A needle in a haystack? The impact of a targeted epilepsy gene panel in the identification of a treatable but rapidly progressive metabolic epilepsy: CLN2 disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38763144 PMCID: PMC11102811 DOI: 10.1055/s-0044-1786854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/30/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal recessive, inherited, lysosomal, and neurodegenerative diseases that causes progressive dementia, seizures, movement disorders, language delay/regression, progressive visual failure, and early death. Neuronal ceroid lipofuscinosis type 2 (CLN2), caused by biallelic pathogenic variants of the TPP1 gene, is the only NCL with an approved targeted therapy. The laboratory diagnosis of CLN2 is established through highly specific tests, leading to diagnostic delays and eventually hampering the provision of specific treatment for patients with CLN2. Epilepsy is a common and clinically-identifiable feature among NCLs, and seizure onset is the main driver for families to seek medical care. OBJECTIVE To evaluate the results of the Latin America Epilepsy and Genetics Program, an epilepsy gene panel, as a comprehensive tool for the investigation of CLN2 among other genetic causes of epilepsy. METHODS A total of 1,284 patients with epilepsy without a specific cause who had at least 1 symptom associated with CLN2 were screened for variants in 160 genes associated with epilepsy or metabolic disorders presenting with epilepsy through an epilepsy gene panel. RESULTS Variants of the TPP1 gene were identified in 25 individuals (1.9%), 21 of them with 2 variants. The 2 most frequently reported variants were p.Arg208* and p.Asp276Val, and 2 novel variants were detected in the present study: p.Leu308Pro and c.89 + 3G > C Intron 2. CONCLUSION The results suggest that these genetic panels can be very useful tools to confirm or exclude CLN2 diagnosis and, if confirmed, provide disease-specific treatment for the patients.
Collapse
Affiliation(s)
| | - Juliana Maria Ferraz Sallum
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Oftalmologia e Ciências Visuais, São Paulo SP, Brazil.
| | | | | | - Fernando Kok
- Mendelics Análise Genômica, São Paulo SP, Brazil.
| | | | - Erika Barron
- BioMarin Brasil Farmacêutica Ltda., São Paulo SP, Brazil.
| | - André Pessoa
- Hospital Albert Sabin, Fortaleza CE, Brazil.
- Universidade Estadual do Ceará, Fortaleza CE, Brazil.
| | | |
Collapse
|
3
|
Fazenbaker AC, Munro CD, Carlson JC, Durst AL, Vento JM. Epilepsy panel testing criteria: A clinical assessment. J Genet Couns 2024; 33:352-360. [PMID: 37246482 DOI: 10.1002/jgc4.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
Epilepsy is a common, and often genetic, neurological disorder. Few guidelines exist to help medical providers or insurance companies decide when to order or cover epilepsy panels for patients with epilepsy. The most recent guidelines were published by NSGC after this study's data collection. Since 2017, the Genetic Testing Stewardship Program (GTSP) at UPMC Children's Hospital of Pittsburgh (CHP) has been utilizing a set of internally developed epilepsy panel (EP) testing criteria to facilitate appropriate EP ordering practices. The purpose of this study was to assess these testing criteria by determining their sensitivities and positive predictive values (PPV). Retrospective chart review of the electronic medical record (EMR) was performed for 1242 CHP Neurology patients that were evaluated for a primary diagnosis of epilepsy between 2016 and 2018. One hundred and nine patients had EPs at various testing laboratories. Of the patients that met criteria, 17 had diagnostic EPs and 54 had negative EPs. Criteria were organized into category groupings (C1-C4), and analyzed alone for C1, in pairs for C2, etc. The highest sensitivity and PPV results in each category grouping were: C1 (64.7%, 60%); C2, (88%, 30.3%); C3, (94.1%, 27.1%); C4, (94.1%, 25.4%). Family history was crucial to increasing sensitivity. Confidence intervals (CIs) narrowed as category grouping level increased, though this was not statistically significant due to the considerable CI overlap across category groupings. The PPV from C4 was applied to the untested population cohort and predicted 121 patients with unidentified positive EPs. This study presents data supporting the predictive capabilities of EP testing criteria and suggests the addition of a family history criterion. This study impacts public health by encouraging the adoption of evidence-driven insurance policies and by suggesting guidelines to ease EP ordering and coverage decisions, which could potentially improve patient access to EP testing.
Collapse
Affiliation(s)
- Andrew C Fazenbaker
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Phoenix Children's Hospital, Division of Genetics and Metabolism, Phoenix, Arizona, USA
| | - Christine D Munro
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Durst
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jodie M Vento
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Carson L, Parlatini V, Safa T, Baig B, Shetty H, Phillips-Owen J, Prasad V, Downs J. The association between early childhood onset epilepsy and attention-deficit hyperactivity disorder (ADHD) in 3237 children and adolescents with Autism Spectrum Disorder (ASD): a historical longitudinal cohort data linkage study. Eur Child Adolesc Psychiatry 2023; 32:2129-2138. [PMID: 35927526 PMCID: PMC10576710 DOI: 10.1007/s00787-022-02041-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
Children and young people with Autism Spectrum Disorder (ASD) have an increased risk of comorbidities, such as epilepsy and Attention-Deficit/Hyperactivity Disorder (ADHD). However, little is known about the relationship between early childhood epilepsy (below age 7) and later ADHD diagnosis (at age 7 or above) in ASD. In this historical cohort study, we examined this relationship using an innovative data source, which included linked data from routinely collected acute hospital paediatric records and childhood community and inpatient psychiatric records. In a large sample of children and young people with ASD (N = 3237), we conducted a longitudinal analysis to examine early childhood epilepsy as a risk factor for ADHD diagnosis while adjusting for potential confounders, including socio-demographic characteristics, intellectual disability, family history of epilepsy and associated physical conditions. We found that ASD children and young people diagnosed with early childhood epilepsy had nearly a twofold increase in risk of developing ADHD later in life, an association which persisted after adjusting for potential confounders (adjusted OR = 1.72, CI95% = 1.13-2.62). This study suggests that sensitive monitoring of ADHD symptoms in children with ASD who have a history of childhood epilepsy may be important to promote early detection and treatment. It also highlights how linked electronic health records can be used to examine potential risk factors over time for multimorbidity in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Lauren Carson
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Tara Safa
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Benjamin Baig
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hitesh Shetty
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Jacqueline Phillips-Owen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Vibhore Prasad
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Johnny Downs
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Whitlock JH, Soelter TM, Williams AS, Hardigan AA, Lasseigne BN. Liquid biopsies in epilepsy: biomarkers for etiology, diagnosis, prognosis, and therapeutics. Hum Cell 2022; 35:15-22. [PMID: 34694568 PMCID: PMC8732818 DOI: 10.1007/s13577-021-00624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.
Collapse
Affiliation(s)
- Jordan H Whitlock
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tabea M Soelter
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avery S Williams
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew A Hardigan
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N Lasseigne
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Perveen N, Ashraf W, Alqahtani F, Fawad Rasool M, Samad N, Imran I. Temporal Lobe Epilepsy: What do we understand about protein alterations? Chem Biol Drug Des 2021; 98:377-394. [PMID: 34132061 DOI: 10.1111/cbdd.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 01/19/2023]
Abstract
During neuronal diseases, neuronal proteins get disturbed due to changes in the connections of neurons. As a result, neuronal proteins get disturbed and cause epilepsy. At the genetic level, many mutations may take place in proteins like axon guidance proteins, leucine-rich glioma inactivated 1 protein, microtubular protein, pore-forming, chromatin remodeling, and chemokine proteins which may lead toward temporal lobe epilepsy. These proteins can be targeted in the future for the treatment purpose of epilepsy. Novel avenues can be developed for therapeutic interventions by these new insights.
Collapse
Affiliation(s)
- Nadia Perveen
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
7
|
Phenotypic Diversity of 15q11.2 BP1-BP2 Deletion in Three Korean Families with Development Delay and/or Intellectual Disability: A Case Series and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11040722. [PMID: 33921555 PMCID: PMC8072617 DOI: 10.3390/diagnostics11040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
The 15q11.2 breakpoint (BP) 1–BP2 deletion syndrome is emerging as the most frequent pathogenic copy number variation in humans related to neurodevelopmental diseases, with changes in cognition, behavior, and brain morphology. Previous publications have reported that patients with 15q11.2 BP1–BP2 deletion showed intellectual disability (ID), speech impairment, developmental delay (DD), and/or behavioral problems. We describe three new cases, aged 3 or 6 years old and belonging to three unrelated Korean families, with a 350-kb 15q11.2 BP1–BP2 deletion of four highly conserved genes, namely, the TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. All of our cases presented with global DD and/or ID, and the severity ranged from mild to severe, but common facial dysmorphism and congenital malformations in previous reports were not characteristic. The 15q11.2 BP1–BP2 deletion was inherited from an unaffected parent in all cases. Our three cases, together with previous findings from the literature review, confirm some of the features earlier reported to be associated with 15q11.2 BP1–BP2 deletion and help to further delineate the phenotype associated with 15q11.2 deletion. Identification of more cases with 15q11.2 BP1–BP2 deletion will allow us to obtain a better understanding of the clinical phenotypes. Further explanation of the functions of the genes within the 15q11.2 BP1–BP2 region is required to resolve the pathogenic effects on neurodevelopment.
Collapse
|
8
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
9
|
Rexach J, Lee H, Martinez-Agosto JA, Németh AH, Fogel BL. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol 2020; 18:492-503. [PMID: 30981321 DOI: 10.1016/s1474-4422(19)30033-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023]
Abstract
Next-generation sequencing technologies allow for rapid and inexpensive large-scale genomic analysis, creating unprecedented opportunities to integrate genomic data into the clinical diagnosis and management of neurological disorders. However, the scale and complexity of these data make them difficult to interpret and require the use of sophisticated bioinformatics applied to extensive datasets, including whole exome and genome sequences. Detailed analysis of genetic data has shown that accurate phenotype information is essential for correct interpretation of genetic variants and might necessitate re-evaluation of the patient in some cases. A multidisciplinary approach that incorporates bioinformatics, clinical evaluation, and human genetics can help to address these challenges. However, despite numerous studies that show the efficacy of next-generation sequencing in establishing molecular diagnoses, pathogenic mutations are generally identified in fewer than half of all patients with genetic neurological disorders, exposing considerable gaps in the understanding of the human genome and providing opportunities to focus research on improving the usefulness of genomics in clinical practice. Looking forward, the emergence of precision health in neurological care will increasingly apply genomic data analysis to pharmacogenetics, preventive medicine, and patient-targeted therapies.
Collapse
Affiliation(s)
- Jessica Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Brent L Fogel
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Clinical Neurogenomics Research Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Abstract
Epilepsy includes a number of medical conditions with recurrent seizures as common denominator. The large number of different syndromes and seizure types as well as the highly variable inter-individual response to the therapies makes management of this condition often challenging. In the last two decades, a genetic etiology has been revealed in more than half of all epilepsies and single gene defects in ion channels or neurotransmitter receptors have been associated with most inherited forms of epilepsy, including some focal and lesional forms as well as specific epileptic developmental encephalopathies. Several genetic tests are now available, including targeted assays up to revolutionary tools that have made sequencing of all coding (whole exome) and non-coding (whole genome) regions of the human genome possible. These recent technological advances have also driven genetic discovery in epilepsy and increased our understanding of the molecular mechanisms of many epileptic disorders, eventually providing targets for precision medicine in some syndromes, such as Dravet syndrome, pyroxidine-dependent epilepsy, and glucose transporter 1 deficiency. However, these examples represent a relatively small subset of all types of epilepsy, and to date, precision medicine in epilepsy has primarily focused on seizure control, and other clinical aspects, such as neurodevelopmental and neuropsychiatric comorbidities, have yet been possible to address. We herein summarize the most recent advances in genetic testing and provide up-to-date approaches for the choice of the correct test for some epileptic disorders and tailored treatments that are already applicable in some monogenic epilepsies. In the next years, the most probably scenario is that epilepsy treatment will be very different from the currently almost empirical approach, eventually with a "precision medicine" approach applicable on a large scale.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini", Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via Gaslini 5, 16148, Genoa, Italy.
| | - Berge A Minassian
- Department of Pediatrics Division of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
11
|
Al Mehdi K, Fouad B, Zouhair E, Boutaina B, Yassine N, Chaimaa AEC, Najat S, Hassan R, Rachida R, Abdelhamid B, Halima N. Molecular Modelling and Dynamics Study of nsSNP in STXBP1 Gene in Early Infantile Epileptic Encephalopathy Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4872101. [PMID: 31976320 PMCID: PMC6955126 DOI: 10.1155/2019/4872101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Early Infantile Epileptic Encephalopathy (known as Ohtahara Syndrome) is one of the most severe and earliest forms of epilepsy, characterized by early seizures onset. It affects newborns and children between two and six years old. Among the genes that have been associated with early infantile epileptic encephalopathy, the STXBP1 gene, which encodes the Syntaxin binding protein1a that is involved in SNARE complex formation, contributes to synaptic vesicles exocytosis. The aim of this study was to identify the most pathogenic polymorphisms of STXBP1 gene and determine their impact on the structure and stability of Stxbp1 protein. The high-risk nonsynonymous single nucleotide polymorphisms (nsSNPs) in the STXBP1 gene were predicted using 13 bioinformatics tools. The conservation analysis was realized by CONSURF web server. The analysis of the impact of the pathogenic SNPs on the structure of Stxbp1 protein was realized using YASARA software, and the molecular dynamics simulation was performed using GROMACS software. Out of 245 nsSNPs, we identified 11 (S42P, H103D R190W, R235G, D238E, L256P, P335S, C354Y, L365V, R406C, and G544D) as deleterious using in silico prediction tools. Conservation analysis results revealed that all these nsSNPs were located in conserved regions. The comparison of the hydrogen and hydrophobic interactions in the wild type Stxbp1 structure and its mutant forms showed that all these nsSNPs affect the protein structure on different levels. The molecular dynamics simulations revealed that the total of nsSNPs affect the protein stability, residual fluctuation, and the compaction at different levels. This study provides helpful information on high risk nsSNPs that may affect the Stxbp1 protein structure and function. Thus, these variants should be taken into consideration during the genetic screening of patients suffering from early infantile epileptic encephalopathy.
Collapse
Affiliation(s)
- Krami Al Mehdi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Benhnini Fouad
- Laboratory of Cellular Signaling, Faculty of Sciences Meknes, Moulay Ismail University, Morocco
| | - Elkarhat Zouhair
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Belkady Boutaina
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Naasse Yassine
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Ait El Cadi Chaimaa
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Sifeddine Najat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Rouba Hassan
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Roky Rachida
- Laboratory of Physiology and Molecular Genetics, Department of Biology, Faculty of Sciences Ain Chock, B.P 5366 Maarif, Casablanca, Morocco
| | - Barakat Abdelhamid
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Nahili Halima
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| |
Collapse
|
12
|
Jagadish S, Payne ET, Wong-Kisiel L, Nickels KC, Eckert S, Wirrell EC. The Ketogenic and Modified Atkins Diet Therapy for Children With Refractory Epilepsy of Genetic Etiology. Pediatr Neurol 2019; 94:32-37. [PMID: 30803845 DOI: 10.1016/j.pediatrneurol.2018.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The ketogenic diet is an accepted treatment modality in refractory childhood epilepsy. In this study, we analyzed the efficacy and tolerability of the ketogenic and modified Atkins diets in children with refractory epilepsy of genetic etiology and studied the effect of the diet on seizure frequency. METHODS The records of children with a genetic etiology for refractory epilepsy treated with ketogenic and modified Atkins diet between September 2005 and July 2016 were reviewed. We documented age of seizure and diet onset, seizure characteristics, and specific genetic etiology. The proportion of children remaining on the diet and responder rates (greater than 50% seizure reduction) were noted at one, three, six, 12, and 24 months after diet initiation. Tolerability and safety profile were also recorded. RESULTS Fifty-nine children with a genetic etiology (63% females, median age at diet onset 2.2 years) were initiated on the diet at our center. Fifty-three (90%) were started on a traditional ketogenic diet, whereas six started a modified Atkins diet. The adverse events at the initiation of diet were vomiting (24%), hypoglycemia (15%), and refusal to feed (11%). Three children stopped the diet before discharge because of poor compliance, severe reflux, and ketoacidosis (n = 1 each). The proportion of children remaining on the diet at one, three, six, 12, and 24 months was 95%, 86%, 69%, 64%, and 47%. The responder rates were 63%, 61%, 54%, 53%, and 41% at one, three, six, 12, and 24 months, respectively. CONCLUSIONS The ketogenic diet is an effective treatment modality in children with refractory epilepsy of genetic etiology.
Collapse
|
13
|
Sega AG, Mis EK, Lindstrom K, Mercimek-Andrews S, Ji W, Cho MT, Juusola J, Konstantino M, Jeffries L, Khokha MK, Lakhani SA. De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy. J Med Genet 2018; 56:113-122. [PMID: 30323019 DOI: 10.1136/jmedgenet-2018-105322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/08/2018] [Accepted: 09/22/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies. OBJECTIVES This study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative. METHODS We used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles. RESULTS We identified novel de novo variants in neuronal differentiation factor 2 (NEUROD2) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients' condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic. CONCLUSION This study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.
Collapse
Affiliation(s)
- Annalisa G Sega
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Saadet Mercimek-Andrews
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Saquib Ali Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|