1
|
Lajmiri E, Javdani M, Khosravian P, Hashemnia M, Kazemi Mehrjerdi H. Preparation and evaluation of controlled released implant containing mesoporous selenium nanoparticles loaded with curcumin in rats with spinal cord injury. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:357-367. [PMID: 39257457 PMCID: PMC11383202 DOI: 10.30466/vrf.2024.2014162.4040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 09/12/2024]
Abstract
In this study, a controlled released delivery drug system designed and synthesized by loading curcumin and selenium nanoparticles (SeNaPs) on chitosan hydrogel, and while evaluating the physicochemical properties of the prepared drug delivery system, the tissue changes caused by the local implant of that system in rats with experimental spinal cord injury (SCI) were investigated. For this purpose, 100 adult female rats were randomly divided into five equal groups which are: Control group without any treatment for SCI, chitosan group that received chitosan hydrogel, curcumin group that received curcumin-loaded hydrogel, SeNaP group that received chitosan loaded with SeNaPs and SeNPCur group that received chitosan loaded with SeNaPs and curcumin. On the 3rd and 7th days of the study, severe infiltration of leukocytes, especially lymphocytes, as well as axon swelling and hemorrhagic necrosis at the lesion sites were observed in all groups, especially the control group. On the 7th day, the severity of these injuries decreased in the SeNPCur group and the highest number of astrocytes was observed in this group. In addition, on the 14th and 21st days of the study, the lowest severity of nerve tissue damage and the lowest presence of inflammatory cells along with the highest number of astrocytes were seen in the SeNPCur group. The glial fibrillary acidic protein study also confirmed the presence of more and significant astrocytes in the SeNPCur, curcumin and SeNP groups at different times of the study, respectively. The histopathological results showed the neuroprotective effects of chitosan hydrogel loaded with selenium and curcumin.
Collapse
Affiliation(s)
- Ehsan Lajmiri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Science Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Yan Q, Xun Y, Lei D, Zhai H. Tanshinone IIA protects motor neuron-like NSC-34 cells against lipopolysaccharide-induced cell injury by the regulation of the lncRNA TCTN2/miR-125a-5p/DUSP1 axis. Regen Ther 2023; 24:417-425. [PMID: 37727797 PMCID: PMC10506057 DOI: 10.1016/j.reth.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 09/21/2023] Open
Abstract
Background Tanshinone IIA (TSIIA) exerts a protective role in spinal cord injury (SCI). However, the mechanism of TSIIA activity in SCI remains to be elucidated. Methods Cell viability and apoptosis were gauged by CCK-8 assay and flow cytometry, respectively. The expression levels of lncRNA TCTN2, miR-125a-5p and DUSP1 were detected by qRT-PCR and western blot. Direct relationship between miR-125a-5p and TCTN2 or DUSP1 was verified by dual-luciferase reporter assay. Results In mouse NSC-34 cells, LPS reduced the expression of TCTN2. TSIIA alleviated cell injury induced by LPS and increased TCTN2 expression in LPS-exposed NSC-34 cells. TCTN2 was a downstream mediator of TSIIA activity. TCTN2 targeted miR-125a-5p, and TCTN2 over-expression attenuated LPS-induced cell damage in NSC-34 cells by down-regulating miR-125a-5p. TCTN2 functioned as a post-transcriptional regulator of DUSP1 expression through miR-125a-5p. DUSP1 was a functional target of miR-125a-5p in controlling NSC-34 cell injury induced by LPS. TSIIA inhibited miR-125a-5p expression and increased the level of DUSP1 protein in LPS-exposed NSC-34 cells. Conclusion Our study establishes a novel mechanism, the TCTN2/miR-125a-5p/DUSP1 axis, at least in part, for the protective activity of TSIIA in cell injury induced by LPS.
Collapse
Affiliation(s)
| | | | - Debao Lei
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, China
| | - Hongyu Zhai
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei, China
| |
Collapse
|
3
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Chiu CH, Wang LC. The therapeutic effect of tanshinone IIA in mouse astrocytes after treatment with Angiostrongylus cantonensis fifth-stage larval excretory-secretory products. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:853-862. [PMID: 37147244 DOI: 10.1016/j.jmii.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are valuable targets for studying host-parasite relationships. ESPs are composed of a variety of molecules that are used to penetrate defensive barriers and avoid immune attack of the host. Tanshinone IIA (TSIIA) is a vasoactive cardioprotective drug that is widely used in studies evaluating potential therapeutic mechanisms. In this study, we will evaluate the therapeutic effects of TSIIA in mouse astrocytes after A. cantonensis fifth-stage larvae (L5) ESPs treatment. METHODS Here, we examined the therapeutic effect of TSIIA by real-time qPCR, western blotting, activity assay, and cell viability assays. RESULTS First, the results showed that TSIIA can elevate cell viability in astrocytes after stimulation with ESPs. On the other hand, TSIIA downregulated the expression of apoptosis-related molecules. However, the expression of molecules related to antioxidant, autophagy, and endoplasmic reticulum stress was significantly increased. The results of antioxidant activation assays showed that the activities of superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase were significantly increased. Finally, we found that cell apoptosis and oxidative stress were reduced in TSIIA-treated astrocytes by immunofluorescence staining. CONCLUSION The findings from this study suggest that TSIIA can reduce cellular damage caused by A. cantonensis L5 ESPs in astrocytes and clarify the related molecular mechanisms.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan.
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Sherawat K, Mehan S. Tanshinone-IIA mediated neuroprotection by modulating neuronal pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1647-1667. [PMID: 37010572 DOI: 10.1007/s00210-023-02476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
The progression of neurological diseases is mainly attributed to oxidative stress, apoptosis, inflammation, and trauma, making them a primary public concern. Since no drugs can stop these neurological disorders from happening, active phytochemical intervention has been suggested as a possible treatment. Among the several phytochemicals being studied for their potential health advantages, tanshinone-IIA (Tan-IIA ) stands out due to its wide range of therapeutic effects. Tan-IIA, derived from the Salvia miltiorrhiza plant, is a phenanthrenequinone. The pharmacological characteristics of Tan-IIAagainst various neurodegenerative and neuropsychiatric illnesses have led researchers to believe that the compound possesses neuroprotective potential. Tan-IIA has therapeutic potential in treating neurological diseases due to its capacity to cross the blood-brain barrier and its broad range of activities. In treating neurological disorders, Tan-IIA has been shown to have neuroprotective effects such as anti-apoptotic, anti-inflammatory, BBB protectant, and antioxidant properties. This article concisely summarises the latest scientific findings about the cellular and molecular aspects of Tan-IIA neuroprotection in relation to various neurological diseases. The results of preclinical studies on Tan-IIA provide insight into its potential application in future therapeutic development. This molecule rapidly establishes as a prominent bioactive compound for clinical research.
Collapse
Affiliation(s)
- Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
6
|
Zeng X, Deng Y, Yuan M, He Q, Wu Y, Li S. Study on the Antioxidant Effect of Tanshinone IIA on Diabetic Retinopathy and Its Mechanism Based on Integrated Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9990937. [PMID: 36437835 PMCID: PMC9691304 DOI: 10.1155/2022/9990937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/18/2022] [Indexed: 02/13/2024]
Abstract
AIM To explore the effect of tanshinone IIA on diabetic retinopathy (DR) and its mechanism. METHODS GeneCards and OMM databases were used to mine DR-related genes. The chemical structure of tanshinone IIA was searched by PubChem, and the potential target was predicted by PharmMapper. Cystape 3.8.2 was used to visualize and analyze the tanshinone IIA-DR protein interaction network. DAVID ver 6.8 data were used to perform enrichment analysis of the tanshinone IIA-DR protein interaction network. Then animal experiments were carried out to further explore the mechanism of tanshinone IIA in the treatment of DR. Male SD rats were intraperitoneally injected with streptozotocin to establish a diabetes model and were randomly divided into a model group, a low-dose tanshinone IIA group and a high-dose group. Normal rats served as the control group. Hematoxylin-eosin (HE) staining was used to observe the structural changes of the retina; the SOD, GSH-Px, and MDA levels in the retina were detected by the xanthine oxidase method; the expression of VEGF, IL-1β, IL-6, TNF-α, and caspase-3 mRNA were detected by qRT-PCR; and the Bcl-2, Bax, and VEGFA proteins were determined by the western blot. RESULTS A total of 213 tanshinone IIA potential targets and 223 DR-related genes were obtained. The enrichment analysis showed that tanshinone IIA may regulate hypoxia, oxidative stress, positive regulation of ERK1 and ERK2 cascade, steroid hormone-mediated signaling pathway, inflammatory response, angiogenesis, VEGF signaling pathway, apoptosis, PI3K-Akt signaling pathway, TNF signaling pathway, and biological processes and signaling pathways. The structure of the retina in the normal control group was clear, the retina in the model group was not clear, the nerve fiber layer was edema, the retinal cell layers of the tanshinone IIA low-dose group are arranged neatly, the inner and outer nuclear layers are slightly disordered, and the tanshinone IIA low-dose group was large. The structure of the mouse retina was further improved compared with the low-dose tanshinone IIA group. Compared with the model group, the retinal tissue SOD and GSH-PX of rats in the tanshinone IIA group increased, and the MDA level decreased (P < 0.05). Compared with the model group, the expression of VEGF, IL-1β, IL-6, TNF-α, and caspase-3 mRNA in the retina of tanshinone IIA groups was significantly reduced (P < 0.01). Compared with the model group, the Bcl-2 protein in the tanshinone IIA groups increased, while the Bax and VEGFA proteins decreased (P < 0.05). CONCLUSION Tanshinone IIA may improve the morphological performance of the retina of diabetic rats and inhibit DR, the mechanism of which may be anti-inflammatory, antiangiogenesis, etc.
Collapse
Affiliation(s)
- Xiaomei Zeng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yonghe Wu
- Hunan University of Chinese Medicine, Changsha, China
| | - Shibing Li
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Xia Y, Wu Q, Mak S, Liu EYL, Zheng BZY, Dong TTX, Pi R, Tsim KWK. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells. FASEB J 2022; 36:e22189. [PMID: 35129858 DOI: 10.1096/fj.202101302rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
The non-classical function of acetylcholine (ACh) has been reported in neuroinflammation that represents the modulating factor in immune responses via activation of α7 nicotinic acetylcholine receptor (α7 nAChR), i.e., a cholinergic anti-inflammatory pathway (CAP). Acetylcholinesterase (AChE), an enzyme for ACh hydrolysis, has been proposed to have a non-classical function in immune cells. However, the involvement of AChE in neuroinflammation is unclear. Here, cultured BV2 cell, a microglial cell line, and primary microglia from rats were treated with lipopolysaccharide (LPS) to induce inflammation and to explore the regulation of AChE during this process. The expression profiles of AChE, α7 nAChR, and choline acetyltransferase (ChAT) were revealed in BV2 cells. The expression of AChE (G4 form) was induced significantly in LPS-treated BV2 cells: the induction was triggered by NF-κB and cAMP signaling. Moreover, ACh or α7 nAChR agonist suppressed the LPS-induced production of pro-inflammatory cytokines, as well as the phagocytosis of microglia, by activating α7 nAChR and followed by the regulation of NF-κB and CREB signaling. The ACh-induced suppression of inflammation was abolished in AChE overexpressed cells, but did not show a significant change in AChE mutant (enzymatic activity knockout) transfected cells. These results indicate that the neuroinflammation-regulated function of AChE may be mediated by controlling the ACh level in the brain system.
Collapse
Affiliation(s)
- Yingjie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shinghung Mak
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Brody Z Y Zheng
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
8
|
Liu JT, Wang SY, Xiao HP, Gu B, Li HN. Effects of methylprednisolone and treadmill training on spinal cord injury in experimental rats. Exp Ther Med 2021; 22:1413. [PMID: 34676006 DOI: 10.3892/etm.2021.10849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
Methylprednisolone (MP) is widely used to treat clinical spinal cord injury (SCI). Treadmill training is also considered an important treatment after SCI to improve motor function in patients, resulting in an evident improvement. Therefore, the present study was designed to evaluate and contrast the effects of MP and treadmill training administered in combination or alone after SCI in adult rats. A rat spinal cord T10 contusion model was induced in Sprague-Dawley rats using an impact device. A total of 40 rats were divided into four groups (n=10 rats/group): the MP, MP + treadmill training, SCI and sham group. At 30 min after injury, MP sodium succinate was injected into the rats of the MP and MP + treadmill training groups. Treadmill training began on the second week post-trauma and was performed for 8 weeks. The results showed that MP therapy combined with treadmill training significantly ameliorated several parameters of hind limb function compared with those by MP treatment alone (all P<0.05). A significantly reduced immunopositive area of Nogo receptor and chondroitin sulfate proteoglycans and reduced relative expression of these mRNAs were found in the MP + treadmill training group (P<0.05) compared with the findings in the MP group. In conclusion, the present study indicated that combined MP and treadmill training treatment improved the recovery of hind limb function in rats with SCI, thus potentially representing a promising strategy to cure SCI.
Collapse
Affiliation(s)
- Jian-Tao Liu
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, P.R. China
| | - Shuo-Yu Wang
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, P.R. China
| | - Han-Ping Xiao
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, P.R. China
| | - Bing Gu
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, P.R. China
| | - Hua-Nan Li
- Department of Spine Surgery, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Zhao YS, Zhang M, Li Q. Protective effects of 1,2-benzisoxazole-3-methanesulfonamide (zonisamide)- loaded polymeric micelles against neurotoxicity in spinal cord: In vitro. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
FU KAIQIANG, FENG CHAO, SUN GUANZHENG, GAO FENG, WANG ZEZHI, SUN YUNING, LI HUATAO, FENG YANNI, HUAN YANJUN, TIAN WENRU, CAO RONGFENG. Protective effect of Tanshinone IIA on LPS-induced canine endometritis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Canine endometritis is a common disease in dogs. This work intends to establish the model of lipopolysaccharide (LPS) -induced canine endometritis, and investigate the effect of Tanshinone IIA (Tan IIA) on canine endometritis. At first, we tested the rectal temperature and the production of IL-1β and TNF-α at 6 h, 12 h, 18 h and 24 h after LPS administration. Then 9 beagles were divided into 3 groups on average, all beagles received intraperitoneal injection of saline solution (group 1 and 2) or Tan IIA (group 3) at 6 h before and after LPS challenge. Beagles of group 2 and 3 were performed uterine infusion of LPS, and beagles of group 1 were performed uterine infusion of saline solution. The rectal temperature was measured 6 h, 12 h, 18 h, 24 h post-LPS challenge, all uterus were collected after 24 h post-LPS challenge. The results showed that canine endometritis can be established by LPS at the concentration of 0.5 mg/kg of body weight after 24 h performance. The rectal temperature, the production of IL-1β and TNF-α increased significantly when the model was established. The results showed that rectal temperature, production of IL-1β and TNF-α and the expression of IL-6 were significantly reduced after treatment with Tan IIA compared with the group of LPS challenge only. However, the expression of IL-10 increased after Tan IIA treatment. Considering the positive anti-inflammation effect on the LPS-induced canine endometritis, Tan IIA may be used as a therapeutic agent to treat the clinical canine endometritis.
Collapse
|
11
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
12
|
Zhang Q, Liu X, Yan L, Zhao R, An J, Liu C, Yang H. Danshen extract (Salvia miltiorrhiza Bunge) attenuate spinal cord injury in a rat model: A metabolomic approach for the mechanism study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152966. [PMID: 31132751 DOI: 10.1016/j.phymed.2019.152966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/25/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUD Spinal cord injury (SCI) is a devastating neurological disorder caused by trauma. To date, SCI treatment is still a significant challenge in clinic and research around the world. Danshen (dried roots and rhizomes of Salvia miltiorrhiza), a commonly used Chinese medicinal herb, has been attracting attention in SCI treatment. PURPOSE Aim of this study was to evaluate the potential beneficial effects of danshen extract in a SCI rat model, as well as investigate possible mechanism of action and potential biomarkers. METHODS Here, a rat SCI model was established with weight-drop method, and danshen extract was administered by oral gavage (12.5 g/kg). Recovery of motor function and histomorphological changes were evaluated by Basso, Beattie and Bresnahan score and hematoxylin-eosin staining, respectively. In addition, neurofilament 200 (NF-H), brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP) and CD11b expressions were assayed by immunofluorescence and western blot analysis. Furthermore, a metabolomics analysis based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was conducted. RESULTS The results demonstrated that danshen extract could significantly ameliorated histopathology changes and improved recovery of motor function after SCI. Moreover, NF-H, BDNF and CD11b expression were progressively increased until 4 weeks post-injury after administrated danshen extract. Furthermore, a good separation was observed among different groups using OPLS-DA. Trajectory analysis showed the gradual shift from position of model group toward normal group with increasing time after administration of danshen extract. Meanwhile, 51 significantly altered metabolites were identified, while metabolic pathway analysis suggested that 6 metabolic pathways were disturbed by the altered metabolites. CONCLUSION In summary, this study provides an overview of neuroprotective effects and investigates possible mechanism of danshen extract in SCI treatment. However, further research is needed to uncover its regulatory mechanisms more clearly.
Collapse
Affiliation(s)
- Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Xifang Liu
- Department of Chinese Medicine Orthopaedic, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ciucui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
13
|
Hu X, Zhou X, Li Y, Jin Q, Tang W, Chen Q, Aili D, Qian H. Application of stem cells and chitosan in the repair of spinal cord injury. Int J Dev Neurosci 2019; 76:80-85. [PMID: 31302172 DOI: 10.1016/j.ijdevneu.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cytology and histology obstacles have been the main barriers to multiple tissues injury repair. In search of the most promising treatment strategies for spinal cord injury (SCI), stem cell-based transplantation coupled with various materials/technologies have been explored extensively to enhance SCI repair. Chitosan (CS) has demonstrated immense potential for widespread application in the form of scaffolds and micro-particles for SCI repair. The current review summarizes the evidences for stem cell-based transplantation and CS in SCI repair. Stem cells transplantation, which plays a key role in the repair of SCI, mainly results from its neural differentiation potential and neurotrophic effects. Application of CS enhances the survival of grafted stem cells, upregulates the expression level of neurotrophic factors and heightens the neural differentiation of stem cells as well as the functional recovery of spinal cord. Meanwhile, CS can also be exploited as growth factors/RNA carriers to control the release of regenerating molecules which are beneficial to damage spinal cord repair.
Collapse
Affiliation(s)
- Xinyuan Hu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xinru Zhou
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yang Li
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Jin
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wenjuan Tang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qun Chen
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dilhumar Aili
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Zhang L, Liu X, Yang H, Zhao R, Liu C, Zhang R, Zhang Q. Comparative pharmacokinetic study on phenolic acids and flavonoids in spinal cord injury rats plasma by UPLC-MS/MS after single and combined oral administration of danshen and huangqin extract. J Pharm Biomed Anal 2019; 172:103-112. [PMID: 31029799 DOI: 10.1016/j.jpba.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023]
Abstract
Chinese medicinal herbs danshen and huangqin have attracted attention in spinal cord injury (SCI) treatment. Purpose of this study was to investigate and compare the pharmacokinetic characteristics of 4 phenolic acids and 4 flavonoids in SCI rat plasma after orally administrate danshen, huangqin and combined extract of these two herbs (CDH). Thus, a rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for simultaneously quantitative determination of tanshinol, protocatechualdehyde, protocatechuic acid, salvianolic acid A, baicalein, baicalin, wogonin and wogonoside. After inducing a contusion injury by a weight-drop device, SCI rats were orally administrated a single dose (12.5 g/kg) of danshen, huangqin and CDH extracts, respectively. Then, blood samples at different time points were collected and analyzed. In CDH group, Cmax and AUC of tanshinol, protocatechualdehyde and protocatechuic acid significantly declined, while those of salvianolic acid A enhanced. These changes were beneficial for danshen to treat SCI. As for flavonoids, double peaks were observed in huangqin group, while this phenomenon disappeared in CDH group. Concomitantly, Cmax and AUC declined after administrated CDH. These alterations were due to influence of danshen active constituents on absorption and transportation process of flavonoids. Therefore, danshen and huangqin significantly influenced pharmacokinetic profile and parameters of each other, thus exert synergistic therapeutic effect in SCI treatment.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Pharmacy, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xifang Liu
- Department of Chinese Medicine orthopaedic, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Rui Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Ciucui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China.
| |
Collapse
|
15
|
Abbaszadeh HA, Niknazar S, Darabi S, Ahmady Roozbahany N, Noori-Zadeh A, Ghoreishi SK, Khoramgah MS, Sadeghi Y. Stem cell transplantation and functional recovery after spinal cord injury: a systematic review and meta-analysis. Anat Cell Biol 2018; 51:180-188. [PMID: 30310710 PMCID: PMC6172584 DOI: 10.5115/acb.2018.51.3.180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury is a significant cause of motor dysfunctions. There is no definite cure for it, and most of the therapeutic modalities are only symptomatic treatment. In this systematic review and meta-analysis, the effectiveness of stem cell therapy in the treatment of the spinal cord injuries in animal models was studied and evaluated. A systematic search through medical databases by using appropriate keywords was conducted. The relevant reports were reviewed in order to find out cases in which inclusion and exclusion criteria had been fulfilled. Finally, 89 articles have been considered, from which 28 had sufficient data for performing statistical analyses. The findings showed a significant improvement in motor functions after cell therapy. The outcome was strongly related to the number of transplanted cells, site of injury, chronicity of the injury, type of the damage, and the induction of immune-suppression. According to our data, improvements in functional recovery after stem cell therapy in the treatment of spinal cord injury in animal models was noticeable, but its outcome is strongly related to the site of injury, number of transplanted cells, and type of transplanted cells.
Collapse
Affiliation(s)
- Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center and Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,G. Raymond Chang School, Ryerson University, Toronto, Canada
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Maryam Sadat Khoramgah
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Liu H, Cai M. Effect of probucol on hemodynamics, rheology and blood lipid of diabetic retinopathy. Exp Ther Med 2018; 15:3809-3814. [PMID: 29581738 PMCID: PMC5863571 DOI: 10.3892/etm.2018.5917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
The effect of probucol in the treatment of diabetic retinopathy was investigated to analyze its impact on its hemodynamics, rheology and blood lipid. A total of 80 patients with diabetic retinopathy who were treated in the Ninth People's Hospital of Chongqing (Chongqing, China) from January 2015 to August 2016 were selected and divided into two groups by random number table, with 40 patients in each group. Control group was treated by conventional and intensive glycemic control and antihypertensive therapy, while observation group was orally administered with 0.375 g probucol twice a day on the basis of intensive therapy. Outpatient follow-up was performed to all the patients for 6 months, then, among the blood rheology, the changes in blood viscosity and erythrocyte aggregation indexes at different time points before and after intervention in the two groups were compared, mean blood flow velocities in renal artery, renal artery pulse indexes and renal artery resistance indexes at different time points were recorded, changes in blood lipid of the two groups before and after intervention were compared, and complication rates during the treatment were calculated. After intervention, the whole blood viscosity at high shear rate, whole blood viscosity at low shear rate and plasma viscosity in observation group were lower than those before intervention and lower than those in control group after intervention (P<0.05); The erythrocyte aggregation indexes in observation group were obviously increased compared with those in control group at 1 week, 1 month and 6 months after intervention (P<0.05). The mean blood flow velocities in renal artery in observation group were remarkably higher than those in control group at 1 week, 1 month and 6 months after intervention (P<0.05), while the renal artery pulse indexes and resistance indexes in observation group were lower than those in control group in the same period (P<0.05). In observation group, the levels of total cholesterol (TC), triglyeride (TG) and low density lipoprotein cholesterol (LDL-C) after intervention were decreased compared with those before intervention, while the level of high-density lipoprotein cholesterol (HDL-C) was increased. The levels of TC, TG and LDL-C in observation group were lower than those in control group after intervention, while the HDL-C level was higher (P<0.05). During the treatment, the total incidence of phlebitis, chills, fever, rash and maculopapule in observation group was obviously lower than that in control group. Probucol can significantly improve the hemodynamic and rheological indexes and lower blood lipid in the body, and is an effective medicine for diabetic retinopathy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Mingming Cai
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| |
Collapse
|