1
|
Zhu M, Sun R, Jin L, Yu D, Huang X, Zhu T, Gong Y, Chen Y, Shi J, Wang Q, Lu C, Wang D. Metabolomics profiling of maternal and umbilical cord blood in normoglycemia macrosomia. J Matern Fetal Neonatal Med 2023; 36:2270761. [PMID: 37848386 DOI: 10.1080/14767058.2023.2270761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Background: Macrosomia is a common disorder that occurs during pregnancy. We investigated the comprehensive metabolite profiles of pregnant maternal and fetal sera in normoglycemic macrosomia in a Chinese population. Methods: Forty pregnant women and their fetuses were included in the study (twenty macrosomia patients and twenty normal-weight controls). Maternal and umbilical cord serum metabolites were identified using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Results: In total, 203 metabolites were identified. Lipids and lipid-like molecules were the predominant metabolites. Fifty-three metabolites with significant differences were obtained in the maternal samples. In the macrosomia group, the levels of docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid were significantly higher than those in the control group. Umbilical cord serum samples were obtained for 24 different metabolites. The maternal-fetal gradient of polyunsaturated fatty acids was decreased in the macrosomia group. Aconitic acid, citric acid, isocitric acid, 2-methylhexanoic acid, and 12-hydroxystearic acid were the common differential metabolites in the maternal and umbilical cord serum samples. Conclusion: There were obvious metabolic abnormalities in the sera of pregnant women and fetuses with macrosomia. Lipids and lipid-like molecules were the predominant differential metabolites but had different classifications in the maternal and umbilical cord serum. These results may provide new insights into the long-term metabolic disorders associated with macrosomia.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Rongyue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Lixu Jin
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dandan Yu
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xiaoxia Huang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Ting Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yujing Gong
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Jiamin Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Qiu Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
2
|
Chang CJ, Barr DB, Ryan PB, Panuwet P, Smarr MM, Liu K, Kannan K, Yakimavets V, Tan Y, Ly V, Marsit CJ, Jones DP, Corwin EJ, Dunlop AL, Liang D. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. ENVIRONMENT INTERNATIONAL 2022; 158:106964. [PMID: 34735953 PMCID: PMC8688254 DOI: 10.1016/j.envint.2021.106964] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal exposures to per- and polyfluoroalkyl substances (PFAS) have been linked to reduced fetal growth. However, the detailed molecular mechanisms remain largely unknown. This study aims to investigate biological pathways and intermediate biomarkers underlying the association between serum PFAS and fetal growth using high-resolution metabolomics in a cohort of pregnant African American women in the Atlanta area, Georgia. METHODS Serum perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) measurements and untargeted serum metabolomics profiling were conducted in 313 pregnant African American women at 8-14 weeks gestation. Multiple linear regression models were applied to assess the associations of PFAS with birth weight and small-for-gestational age (SGA) birth. A high-resolution metabolomics workflow including metabolome-wide association study, pathway enrichment analysis, and chemical annotation and confirmation with a meet-in-the-middle approach was performed to characterize the biological pathways and intermediate biomarkers of the PFAS-fetal growth relationship. RESULTS Each log2-unit increase in serum PFNA concentration was significantly associated with higher odds of SGA birth (OR = 1.32, 95% CI 1.07, 1.63); similar but borderline significant associations were found in PFOA (OR = 1.20, 95% CI 0.94, 1.49) with SGA. Among 25,516 metabolic features extracted from the serum samples, we successfully annotated and confirmed 10 overlapping metabolites associated with both PFAS and fetal growth endpoints, including glycine, taurine, uric acid, ferulic acid, 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acid C18:1, androgenic hormone conjugate, parent bile acid, and bile acid-glycine conjugate. Also, we identified 21 overlapping metabolic pathways from pathway enrichment analyses. These overlapping metabolites and pathways were closely related to amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism perturbations. CONCLUSION In this cohort of pregnant African American women, higher serum concentrations of PFOA and PFNA were associated with reduced fetal growth. Perturbations of biological pathways involved in amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism were associated with PFAS exposures and reduced fetal growth, and uric acid was shown to be a potential intermediate biomarker. Our results provide opportunities for future studies to develop early detection and intervention for PFAS-induced fetal growth restriction.
Collapse
Affiliation(s)
- Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa M Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - ViLinh Ly
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Anne L Dunlop
- Woodruff Health Sciences Center, School of Medicine and Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
4
|
Hu X, Li S, Cirillo P, Krigbaum N, Tran V, Ishikawa T, La Merrill MA, Jones DP, Cohn B. Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. Reprod Toxicol 2020; 92:129-137. [PMID: 31102720 PMCID: PMC7055929 DOI: 10.1016/j.reprotox.2019.05.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
The advancement of high-resolution metabolomics (HRM) and metabolome-wide-association study (MWAS) enables the readout of environmental effects in human specimens. We used HRM to understand DDT-induced alterations of in utero environment and potential health effects. Endogenous metabolites were measured in 397 maternal perinatal serum samples collected during 1959-1967 in the Child Health and Development Studies (CHDS) and in 16 maternal postnatal serum samples of mice treated with or without DDT. MWAS was performed to assess associations between metabolites and p,p'-DDT, o,p'-DDT and p,p'-DDE levels, followed by pathway analysis. Distinct metabolic profiles were found with p,p'-DDT and p,p'-DDE. Amino acids such arginine had a strong association with p,p'-DDT and o,p'-DDT in both women and mice, whereas lipids and acyl-carnitine intermediates were found exclusively associated with p,p'-DDE in CHDS women indicating mitochondrial impairment. It suggests that the role of serine and fatty acid metabolism on the causal disease pathway should be examined.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Piera Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - Nickilou Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Tomoko Ishikawa
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | - Barbara Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA.
| |
Collapse
|
5
|
Hu X, Li S, Cirillo PM, Krigbaum NY, Tran V, Jones DP, Cohn BA. Reprint of "Metabolome Wide Association Study of Serum Poly and Perfluoroalkyl Substances (PFASs) in Pregnancy and Early Postpartum". Reprod Toxicol 2020; 92:120-128. [PMID: 31923462 DOI: 10.1016/j.reprotox.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
High-resolution metabolomics (HRM) profiling of metabolic fingerprints can improve understanding of how poly and perfluoroalkyl substances (PFASs) induce metabolic alterations of in utero environment and impact fetal health. HRM profiling and quantification of PFASs were performed for 397 maternal perinatal serum samples collected from 1959-1967 in the Child Health and Development Studies (CHDS). We used Metabolome-Wide Association Studies (MWAS) and pathway enrichment analysis for metabolic associations with PFOS, its precursor EtFOSAA, and EtFOSAA-to-PFOS ratio. Distinct metabolic profiles were found with EtFOSAA and PFOS. Urea cycle metabolites such as arginine, lysine and creatine had opposite associations with EtFOSAA (negative) and PFOS (positive); whereas, carnitine shuttle metabolites were found to be exclusively and positively associated with PFOS indicating perturbation in fatty acid metabolism. These differential metabolic associations for precursor and end-product represent an important first step in identifying how PFASs alter the in utero environment and potentially leads to disease risk.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Piera M Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - Nickilou Y Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | - Barbara A Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA.
| |
Collapse
|
6
|
Hu X, Li S, Cirillo PM, Krigbaum NY, Tran V, Jones DP, Cohn BA. Metabolome Wide Association Study of Serum Poly and Perfluoroalkyl Substances (PFASs) in Pregnancy and Early Postpartum. Reprod Toxicol 2019; 87:70-78. [PMID: 31121237 DOI: 10.1016/j.reprotox.2019.05.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
High-resolution metabolomics (HRM) profiling of metabolic fingerprints can improve understanding of how poly and perfluoroalkyl substances (PFASs) induce metabolic alterations of in utero environment and impact fetal health. HRM profiling and quantification of PFASs were performed for 397 maternal perinatal serum samples collected from 1959-1967 in the Child Health and Development Studies (CHDS). We used Metabolome-Wide Association Studies (MWAS) and pathway enrichment analysis for metabolic associations with PFOS, its precursor EtFOSAA, and EtFOSAA-to-PFOS ratio. Distinct metabolic profiles were found with EtFOSAA and PFOS. Urea cycle metabolites such as arginine, lysine and creatine had opposite associations with EtFOSAA (negative) and PFOS (positive); whereas, carnitine shuttle metabolites were found to be exclusively and positively associated with PFOS indicating perturbation in fatty acid metabolism. These differential metabolic associations for precursor and end-product represent an important first step in identifying how PFASs alter the in utero environment and potentially leads to disease risk.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Piera M Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - Nickilou Y Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | - Barbara A Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA.
| |
Collapse
|