1
|
Hong YX, Wu C, Li JZ, Song F, Hu Y, Han Y, Mao YJ, Wu WY, Wang Y, Li G. SUMOylation of TP53INP1 is involved in miR-30a-5p-regulated heart senescence. Exp Mol Med 2024; 56:2519-2534. [PMID: 39511427 PMCID: PMC11612193 DOI: 10.1038/s12276-024-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024] Open
Abstract
Heart senescence is critical for cardiac function. This study aimed to characterize the role and mechanism of action of miR-30a-5p in cardiac senescence. miR-30a-5p was downregulated in aged mouse hearts and neonatal rat cardiomyocytes (NRCMs). In vivo, using a combination of echocardiography and different molecular biological approaches, we investigated the role of miR-30a-5p knockout or overexpression in natural- or D-galactose-induced heart aging in mice. In vitro, using RNA sequencing and a series of molecular biology methods, the mechanism by which miR-30a-5p regulates cardiac senescence was explored in cardiomyocytes. miR-30a-5p knockout mice showed aggravated natural- or D-galactose-induced heart aging compared to wild-type littermate mice, with significantly decreased heart function, an increased number of γH2AX-positive cells, reduced telomere length, and upregulated p21 and p53 expression. Cardiac-specific knockdown of miR-30a-5p using adeno-associated virus 9 in D-galactose-induced senescent wild-type mice resulted in effects similar to those observed in knockout mice. Notably, the overexpression of miR-30a-5p in wild-type murine hearts alleviated D-galactose-induced heart senescence by improving heart function, increasing telomere length, decreasing the number of γH2AX-positive cells, and downregulating p53 and p21 expression. This was confirmed in D-galactose-treated or naturally aged NRCMs. Mechanistically, TP53INP1 was identified as a target of miR-30a-5p by mediating the SUMOylation of TP53INP1 and its translocation from the cytoplasm to the nucleus to interact with p53. Furthermore, this study demonstrated that cardiac-specific TP53INP1 deficiency ameliorates miR-30a-5p knockout-aggravated cardiac dysfunction and heart senescence. This study identified miR-30a-5p as a crucial modulator of heart senescence and revealed that the miR-30a-5p-TP53INP1-p53 axis is essential for heart and cardiomyocyte aging.
Collapse
Affiliation(s)
- Yi-Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Jing-Zhou Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Yue Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Yi-Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, 361000, Fujian, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, 361000, Fujian, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
- Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, 361000, Fujian, China.
| |
Collapse
|
2
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Qian J, Wan W, Fan M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen Thorac Cardiovasc Surg 2022; 71:280-290. [PMID: 36008747 DOI: 10.1007/s11748-022-01867-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Doxorubicin is a type of effective antitumor drug but can contribute to cardiomyocyte injuries. We aimed to dissect the mechanism of the HMOX1/CTGF axis in DOX-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis. METHODS Bioinformatics analysis was conducted to retrieve differentially expressed genes in a DOX-induced mouse model. Mouse cardiomyocytes, HL-1 cells, were induced with l µM DOX, after which gain- or loss-of-function assays were applied. CCK-8, fluorescent probe assay, flow cytometry, and corresponding kits were employed to detect cell viability, ROS levels, mitochondrial membrane potential and cell apoptosis, and GSH and Fe2+ contents, respectively. qRT-PCR or Western blot assay was adopted to test HMOX1, CTGF, BCL-2, Caspase3, Cleaved-Caspase3, and GPX4 expression. RESULTS Bioinformatics analysis showed that HMOX1 and CTGF were highly expressed in DOX-induced mice and correlated with each other. Also, HMOX1 and CTGF expression was high in HL-1 cells after DOX treatment, along with an obvious decrease in cell viability and GSH and GPX4 expression, an increase in ROS levels, apoptosis, and Fe2+ contents, and mitochondrial membrane potential dysfunction or loss. HMOX1 or CTGF silencing diminished cell apoptosis, Cleaved-Caspase3 expression, Fe2+ contents, and ROS levels, enhanced cell viability and the expression of GSH, GPX4, and BCL-2, and recovered mitochondrial membrane potential in DOX-induced HL-1 cells. Nevertheless, the effects of HMOX1 silencing on the viability, apoptosis, ferroptosis, and mitochondrial dysfunction of DOX-induced HL-1 cells were counteracted by CTGF overexpression. CONCLUSIONS In conclusion, HMOX1 silencing decreased CTGF expression to alleviate DOX-induced injury, mitochondrial dysfunction, and ferroptosis of mouse cardiomyocytes.
Collapse
Affiliation(s)
- Jia Qian
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Wenting Wan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Min Fan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
4
|
Kanno Y, Shu E. α2-Antiplasmin as a Potential Therapeutic Target for Systemic Sclerosis. Life (Basel) 2022; 12:life12030396. [PMID: 35330147 PMCID: PMC8953682 DOI: 10.3390/life12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin that is characterized by immune system abnormalities, vascular damage, and extensive fibrosis of the skin and visceral organs. α2-antiplasmin is known to be the main plasmin inhibitor and has various functions such as cell differentiation and cytokine production, as well as the regulation of the maintenance of the immune system, endothelial homeostasis, and extracellular matrix metabolism. The expression of α2-antiplasmin is elevated in dermal fibroblasts from systemic sclerosis patients, and the blockade of α2-antiplasmin suppresses fibrosis progression and vascular dysfunction in systemic sclerosis model mice. α2-antiplasmin may have promise as a potential therapeutic target for systemic sclerosis. This review considers the role of α2-antiplasmin in the progression of systemic sclerosis.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
- Correspondence: ; Tel.:+81-0774-65-8629
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| |
Collapse
|
5
|
Yang XX, Zhao ZY. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy. Can J Physiol Pharmacol 2022; 100:167-175. [PMID: 35025607 DOI: 10.1139/cjpp-2021-0280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study aimed to investigate the role of miR-30a-5p in DCM and the underlying mechanism. The rat model of diabetes mellitus (DM) was established by streptozotocin injection, and the rat primary cardiac fibroblasts (CFs) were isolated from cardiac tissue and then treated with high glucose (HG). MTT assay was performed to assess the viability of CFs. Dual-luciferase reporter gene assay was conducted to verify the interaction between miR-30a-5p and Smad2. The expression of miR-30a-5p was downregulated in the myocardial tissues of DM rats and HG-stimulated CFs. Overexpression of miR-30a-5p reduced Smad2 levels and inhibited collagen formation in HG-stimulated CFs and DM rats, as well as decreased the proliferation of CFs induced by HG. Smad2 was a target of miR-30a-5p and its expression was inhibited by miR-30a-5p. Furthermore, the simultaneous overexpression of Smad2 and miR-30a-5p reversed the effect of miR-30a-5p overexpression alone in CFs. Our results indicated that miR-30a-5p reduced Smad2 expression and also induced a decrease in proliferation and collagen formation in DCM.
Collapse
Affiliation(s)
- Xiao-Xu Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
6
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
7
|
MicroRNAs-The Heart of Post-Myocardial Infarction Remodeling. Diagnostics (Basel) 2021; 11:diagnostics11091675. [PMID: 34574016 PMCID: PMC8469128 DOI: 10.3390/diagnostics11091675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) is one of the most frequent cardiac emergencies, with significant potential for mortality. One of the major challenges of the post-MI healing response is that replacement fibrosis could lead to left ventricular remodeling (LVR) and heart failure (HF). This process involves canonical and non-canonical transforming growth factor-beta (TGF-β) signaling pathways translating into an intricate activation of cardiac fibroblasts and disproportionate collagen synthesis. Accumulating evidence has indicated that microRNAs (miRNAs) significantly contribute to the modulation of these signaling pathways. This review summarizes the recent updates regarding the molecular mechanisms underlying the role of the over 30 miRNAs involved in post-MI LVR. In addition, we compare the contradictory roles of several multifunctional miRNAs and highlight their potential use in pressure overload and ischemia-induced fibrosis. Finally, we discuss their attractive role as prognostic biomarkers for HF, highlighting the most relevant human trials involving these miRNAs.
Collapse
|
8
|
Zhang Y, Cai S, Ding X, Lu C, Wu R, Wu H, Shang Y, Pang M. MicroRNA-30a-5p silencing polarizes macrophages toward M2 phenotype to alleviate cardiac injury following viral myocarditis by targeting SOCS1. Am J Physiol Heart Circ Physiol 2021; 320:H1348-H1360. [PMID: 33416455 DOI: 10.1152/ajpheart.00431.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/01/2021] [Indexed: 02/02/2023]
Abstract
Viral myocarditis (VMC) is a life-threatening disease characterized by severe cardiac inflammation generally caused by coxsackievirus B3 (CVB3) infection. Several microRNAs (miRNAs or miRs) are known to play crucial roles in the pathogenesis of VMC. The study aimed to decipher the role of miR-30a-5p in the underlying mechanisms of VMC pathogenesis. We first quantified miR-30a-5p expression in a CVB3-induced mouse VMC model. The physiological characteristics of mouse cardiac tissues were then detected by hematoxylin and eosin (HE) and Picrosirius red staining. We established the correlation between miR-30a-5p and SOCS1, using dual-luciferase gene assay and Pearson's correlation coefficient. The expression of inflammatory factors (IFN-γ, IL-6, IL-10, and IL-13), M1 polarization markers [TNF-α, inducible nitric oxide synthase (iNOS)], M2 polarization markers (Arg-1, IL-10), and myocardial hypertrophy markers [atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP)] was detected by RT-qPCR and Western blot analysis. miR-30a-5p was found to be highly expressed in VMC mice. Silencing of miR-30a-5p improved the cardiac function index and reduced heart weight-to-body weight ratio, myocardial tissue pathological changes and fibrosis degree, serological indexes, as well as proinflammatory factor levels, while enhancing anti-inflammatory factor levels in VMC mice. Furthermore, silencing of miR-30a-5p inhibited M1 polarization of macrophages while promoting M2 polarization in vivo and in vitro. SOCS1 was a target gene of miR-30a-5p, and the aforementioned cardioprotective effects of miR-30a-5p silencing were reversed upon silencing of SOCS1. Overall, this study shows that silencing of miR-30a-5p may promote M2 polarization of macrophages and improve cardiac injury following VMC via SOCS1 upregulation, constituting a potential therapeutic target for VMC treatment.NEW & NOTEWORTHY We found in this study that microRNA (miR)-30a-5p inhibition might improve cardiac injury following viral myocarditis (VMC) by accelerating M2 polarization of macrophages via SOCS1 upregulation. Furthermore, the anti-inflammatory mechanisms of miR-30a-5p inhibition may contribute to the development of new therapeutic strategies for VMC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Magnetic Resonance Imaging, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Shengbao Cai
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xiaoxue Ding
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Can Lu
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ruodan Wu
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Haiyan Wu
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yiyi Shang
- Medical School of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Mingjie Pang
- Department of Cardiology, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
9
|
Silvestro S, Gugliandolo A, Chiricosta L, Diomede F, Trubiani O, Bramanti P, Pizzicannella J, Mazzon E. MicroRNA Profiling of HL-1 Cardiac Cells-Derived Extracellular Vesicles. Cells 2021; 10:cells10020273. [PMID: 33573156 PMCID: PMC7912193 DOI: 10.3390/cells10020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
HL-1 is a cell line that shows a phenotype similar to adult cardiomyocytes. All major cardiac cell types release extracellular vesicles (EVs) that emerge as key mediators of intercellular communication. EVs can mediate intercellular cross-talk through the transfer of specific microRNAs (miRNAs). MiRNAs are known to play important regulatory roles during tissue differentiation and regeneration processes. Furthermore, miRNAs have recently been shown to be involved in the proliferation of adult cardiomyocytes. In this context, the purpose of this study was to analyze the transcriptomic profile of miRNAs expressed from HL-1 cardiac muscle cell-derived EVs, using next generation sequencing (NGS). Specifically, our transcriptomic analysis showed that the EVs derived from our HL-1 cells contained miRNAs that induce blood vessel formation and increase cell proliferation. Indeed, our bioinformatics analysis revealed 26 miRNAs expressed in EVs derived from our HL-1 that target genes related to cardiovascular development. In particular, their targets are enriched for the following biological processes related to cardiovascular development: heart morphogenesis, positive regulation of angiogenesis, artery development, ventricular septum development, cardiac atrium development, and myoblast differentiation. Consequently, EVs could become important in the field of regenerative medicine.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (A.G.); (L.C.); (P.B.)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (A.G.); (L.C.); (P.B.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (A.G.); (L.C.); (P.B.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (A.G.); (L.C.); (P.B.)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (S.S.); (A.G.); (L.C.); (P.B.)
- Correspondence: ; Tel.: +39-090-6012-8172
| |
Collapse
|
10
|
Yousefi F, Soltani BM, Rabbani S. MicroRNA‑331 inhibits isoproterenol‑induced expression of profibrotic genes in cardiac myofibroblasts via the TGFβ/smad3 signaling pathway. Sci Rep 2021; 11:2548. [PMID: 33510328 PMCID: PMC7843612 DOI: 10.1038/s41598-021-82226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis in the failing heart is modulated by activated myofibroblasts, and is a pathology marked by their deposition of extracellular matrix proteins. The TGFβ signaling pathway is important in stimulating fibrosis and therefore seems an attractive new target for anti-fibrotic therapy. The relationship between ncRNAs and TGFβ signaling pathway has been extensively studied. Here, we have provided several lines of evidence to prove that the fibrosis process could be regulated by miR-331 through targeting TGFβ signaling. First, bioinformatics analysis and dual luciferase assay validated a direct interaction between the miR-331 and TGFβ-R1 3'UTR sequence which results in the downregulation of TGFβ signaling pathway. Second, miR-331 expression was inversely related to the expression of a number of genes which are involved in extracellular matrix (ECM) production and deposition processes, both in the in vivo and in vitro fibrosis models. Third, in cultured mouse and human cardiac myofibroblasts (CMyoFbs) under ISO treatment, overexpression of miR-331 decreased the expression level of fibrosis-related genes. Consistently, western blot analysis confirmed that miR-331 overexpression ended in both Smad3 and Col1A1 protein level reduction in mouse cardiac myofibroblasts. Finally, flow cytometry analysis, cyclin D1 and D2 gene expression analysis, and wound-healing assay confirmed the inhibitory effect of miR-331 against cell proliferation and migration in ISO-treated cardiac myofibroblasts. Taken together, accumulative results showed that miR-331 reduced the level of fibrosis-related proteins in cardiac myofibroblasts culture via regulating TGFβ signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N, Cannata-Andía JB. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int J Mol Sci 2021; 22:E408. [PMID: 33401711 PMCID: PMC7795409 DOI: 10.3390/ijms22010408] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Retic REDinREN-ISCIII, 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| |
Collapse
|
12
|
Abstract
Cardiac fibrosis is associated with non-ischemic dilated cardiomyopathy, increasing its morbidity and mortality. Cardiac fibroblast is the keystone of fibrogenesis, being activated by numerous cellular and humoral factors. Macrophages, CD4+ and CD8+ T cells, mast cells, and endothelial cells stimulate fibrogenesis directly by activating cardiac fibroblasts and indirectly by synthetizing various profibrotic molecules. The synthesis of type 1 and type 3 collagen, fibronectin, and α-smooth muscle actin is rendered by various mechanisms like transforming growth factor-beta/small mothers against decapentaplegic pathway, renin angiotensin system, and estrogens, which in turn alter the extracellular matrix. Investigating the underlying mechanisms will allow the development of diagnostic and prognostic tools and discover novel specific therapies. Serum biomarkers aid in the diagnosis and tracking of cardiac fibrosis progression. The diagnostic gold standard is cardiac magnetic resonance with gadolinium administration that allows quantification of cardiac fibrosis either by late gadolinium enhancement assessment or by T1 mapping. Therefore, the goal is to stop and even reverse cardiac fibrosis by developing specific therapies that directly target fibrogenesis, in addition to the drugs used to treat heart failure. Cardiac resynchronization therapy had shown to revert myocardial remodeling and to reduce cardiac fibrosis. The purpose of this review is to provide an overview of currently available data.
Collapse
|
13
|
Xiang S, Li J, Zhang Z. miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway. Exp Ther Med 2020; 19:2067-2074. [PMID: 32104267 PMCID: PMC7027307 DOI: 10.3892/etm.2020.8455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
A critical event in cardiac fibrosis is the transformation of cardiac fibroblasts (CFs) into myofibroblasts. MicroRNAs (miRNAs) have been reported to be critical regulators in the development of cardiac fibrosis. However, the underlying molecular mechanisms of action of miRNA (miR)-26b in cardiac fibrosis have not yet been extensively studied. In the present study, the expression levels of miR-26b were downregulated in isoproterenol (ISO)-treated cardiac tissues and CFs. Moreover, miR-26b overexpression inhibited the cell viability of ISO-treated CFs and decreased the protein levels of collagen I and α-smooth muscle actin (α-SMA). Furthermore, bioinformatics analysis and dual luciferase reporter assays indicated that Kelch-like ECH-associated protein 1 (Keap1) was the target of miR-26b, and that its expression levels were decreased in miR-26b-treated cells. In addition, Keap1 overexpression reversed the inhibitory effects of miR-26b on ISO-induced cardiac fibrosis, as demonstrated by cell viability, and the upregulation of collagen I and α-SMA expression levels. Furthermore, inhibition of Keap1 expression led to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which induced the transcriptional activation of antioxidant/detoxifying proteins in order to protect against cardiac fibrosis. Taken together, the data demonstrated that miR-26b attenuated ISO-induced cardiac fibrosis via the Keap-mediated activation of Nrf2.
Collapse
Affiliation(s)
- Shaohua Xiang
- Department of Cardiothoracic Surgery, Dianjiang County Hospital of Traditional Chinese Medicine, Chongqing 408300, P.R. China
| | - Jing Li
- Department of Cardiothoracic Surgery, People's Hospital of Changshou, Chongqing 401220, P.R. China
| | - Zhengfu Zhang
- Department of Cardiothoracic Surgery, People's Hospital of Changshou, Chongqing 401220, P.R. China
| |
Collapse
|
14
|
Si LYN, Ramalingam A, Ali SS, Aminuddin A, Ng PY, Latip J, Kamisah Y, Budin SB, Zainalabidin S. Roselle attenuates cardiac hypertrophy after myocardial infarction in vivo and in vitro. EXCLI JOURNAL 2019; 18:876-892. [PMID: 31645847 PMCID: PMC6806200 DOI: 10.17179/excli2019-1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022]
Abstract
Roselle (Hibiscus sabdariffa Linn) has been traditionally used as folk medicine for hypertension and maintaining cardiovascular health, with therapeutic potential in protecting against numerous cardiovascular diseases. However, it remains unclear whether roselle can be used for management of cardiac hypertrophy seen after myocardial infarction (MI). This study therefore investigated the effects of aqueous roselle extract on cardiac hypertrophy arising from myocardial infarction both in vivo and in vitro. For in vivo study, male Sprague-Dawley rats were divided into control or MI groups (receiving 85 mg/kg isoproterenol s.c. for 2 days) and were given roselle extract (100 mg/kg, p.o daily) for 28 days. Cardiac structure and functional changes were evaluated at study end-point using histology, Langendorff analysis and gene expression analysis. In vitro effects of roselle were also assessed on ANG II-induced cardiomyocytes hypertrophy using H9c2 cells, simulating cardiac hypertrophy evident after MI. Roselle significantly ameliorated MI-induced cardiac systolic and diastolic dysfunction, as seen across improvement in left ventricular developed pressure (LVDP) and its derivative (LVdP/dtmax) and isovolumic relaxation (Tau). Oxidative stress evident across elevated pro-oxidant markers (NOX2 subunit of NADPH oxidase and 8-isoprostane) as well as reduced antioxidant markers (superoxide dismutase and glutathione) were also significantly attenuated by roselle. Furthermore, roselle treatment markedly reduced markers of cardiac remodeling (cardiac hypertrophy and fibrosis) compared to the untreated MI rats. On in vitro analysis, roselle significantly attenuated ANG II-induced cardiomyoycte hypertrophy in dose-dependent manner. This study demonstrated that roselle attenuates cardiac hypertrophy and dysfunction seen after MI both in vivo and in vitro, and these effects are likely mediated by phenolic compounds found in roselle extract.
Collapse
Affiliation(s)
- Lislivia-Yiang-Nee Si
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Anand Ramalingam
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Shafreena Shaukat Ali
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Amnani Aminuddin
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Pei-Yuen Ng
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Zhang L, Zhang J, Tong Q, Wang G, Dong H, Wang Z, Sun Q, Wu H. Reduction of miR-29a-3p induced cardiac ischemia reperfusion injury in mice via targeting Bax. Exp Ther Med 2019; 18:1729-1737. [PMID: 31410131 PMCID: PMC6676207 DOI: 10.3892/etm.2019.7722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
The current study mainly aimed to evaluate the expression and the potential mechanism of miR-29a-3p in the hearts of mice after cardiac ischemia reperfusion (CIR) injury. Quantitative PCR was carried out to assess the relative levels of miR-29a-3p in the hearts of a CIR injury mouse model. To the best of our knowledge, the current study is the first to show that the level of miR-29a-3p was significantly decreased in the hearts of CIR injury mouse models compared with that of sham controls. Moreover, the authors found that decreased miR-29a-3p levels enhanced the production of reactive oxygen species in cardiomyocytes. Meanwhile, the inhibition of miR-29a-3p induced substantial cardiomyocyte apoptosis. Further study showed that the inhibition of miR-29a-3p decreased the activation of Akt and p38, suggesting a stress-induced self-regulatory mechanism after CIR injury in primary cardiomyocytes. A dual luciferase assay and western blot analysis showed that Bax was a target gene of miR-29a-3p. The authors also measured the level of miR-29a-3p in the plasma of 100 acute myocardial infarction (AMI) patients and found that circulating miR-29a-3p was significantly decreased in AMI patients. Receiver operating characteristic curve analysis showed that miR-29a-3p could be used to screen AMI patients from healthy controls. Hence, the authors of the current study propose that reduced miR-29a-3p levels in primary cardiomyocytes contribute to CIR injury-related apoptosis mainly by targeting Bax.
Collapse
Affiliation(s)
- Liang Zhang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Jian Zhang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qiguang Tong
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Guannan Wang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Hongling Dong
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhonglu Wang
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qi Sun
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Hangyu Wu
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
16
|
Plasma big endothelin-1 predicts new-onset atrial fibrillation after surgical septal myectomy in patients with hypertrophic cardiomyopathy. BMC Cardiovasc Disord 2019; 19:122. [PMID: 31117937 PMCID: PMC6532265 DOI: 10.1186/s12872-019-1085-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Background Postoperative atrial fibrillation (POAF) is a common complication in patients with obstructive hypertrophic cardiomyopathy (HOCM) who undergo surgical myectomy. POAF is associated with poor outcome. The role of plasma big endothelin-1 level in predicting atrial fibrillation after surgical septal myectomy in HOCM patients has not well been studied. Methods A total of 118 patients with HOCM who underwent surgical septal myectomy were recruited in this study. Plasma big endothelin-1 level was measured. The heart rhythm was continuously monitored during hospital stay. Preoperative, intraoperative, and postoperative variables were collected. Results POAF developed among 26 of the 118 patients (22%) in this study. Compared with those without POAF, patients with POAF were significantly older (53.5 ± 10.6 vs. 47.3 ± 13.6 years, P = 0.033), more likely to undergo mitral valve surgery (38.5% vs. 18.5%, P = 0.032), and had higher plasma big endothelin-1 levels (0.41 ± 0.19 vs. 0.27 ± 0.14 pmol/l, P = 0.001), longer hospital stay (9.1 ± 3.7 vs. 7.5 ± 2.8 days, P = 0.022), larger preoperative left atria (48.0 ± 5.2 vs. 44.1 ± 5.9 mm; P = 0.003). In the receiver operating characteristic curve analysis, the area under the curve for big endothelin-1 was 0.734 (95% CI, 0.634 to 0.834, P<0.001). In multivariate logistic regression analysis, preoperative big endothelin-1 level (OR 100.7, 95%CI: 5.0–2020.0, P = 0.003) and left atrial diameter (OR 1.106, 95%CI: 1.015–1.205, P = 0.022) were independent predictors of POAF. Conclusion Elevated preoperative plasma big endothelin-1 level is an independent predictor of POAF in HOCM patients undergoing surgical septal myectomy.
Collapse
|
17
|
Han L, Zhu B, Chen H, Jin Y, Liu J, Wang W. Proteasome inhibitor MG132 inhibits the process of renal interstitial fibrosis. Exp Ther Med 2019; 17:2953-2962. [PMID: 30936965 PMCID: PMC6434245 DOI: 10.3892/etm.2019.7329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
The proteasome inhibitor pathway serves a crucial role in cell cycle progression and apoptosis, and in the activation of transcription factors and cytokines in tumor cells. The aim of the current study was to investigate the effect of the proteasome inhibitor, MG132, on transforming growth factor (TGF)-β1-induced expression of extracellular matrix proteins in rat renal interstitial fibroblasts (NRK-49F cells) and to better elucidate the mechanism by which MG132 functions. The level of connective tissue growth factor (CTGF), α-smooth muscle actin (SMA), fibronectin (FN) and collagen type III (Col III) in the MG132-pretreated groups was significantly decreased compared with groups treated with TGF-β1 alone. MG132 significantly decreased mRNA and the protein levels of fibrosis-associated factors induced by TGF-β1 treatment. The MG132-pretreated groups exhibited lower phosphorylated-mothers against decapentaplegic homolog (p-Smad)2, p-Smad3 and FN protein expression compared with the groups treated with TGF-β1 alone. In conclusion, MG132 reduced mRNA and protein expression of fibrosis-associated factors. It can successfully inhibit the inflammatory reaction induced by TGF-β via the Smad signaling pathway. These results indicate that MG132 appears to have a potent effect in counteracting renal fibrosis. MG132 may be applied in the treatment of patients with chronic kidney disease.
Collapse
Affiliation(s)
- Lin Han
- Department of Nephrology, Yangpu Hospital, Tong Ji University, School of Medicine, Shanghai 200090, P.R. China
| | - Bingbing Zhu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| | - Hui Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| | - Yuanmeng Jin
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
18
|
Huang YM, Li WW, Wu J, Han M, Li BH. The diagnostic value of circulating microRNAs in heart failure. Exp Ther Med 2019; 17:1985-2003. [PMID: 30783473 PMCID: PMC6364251 DOI: 10.3892/etm.2019.7177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome, characterized by inadequate blood perfusion of tissues and organs caused by decreased heart ejection capacity resulting from structural or functional cardiac disorders. HF is the most severe heart condition and it severely compromises human health; thus, its early diagnosis and effective management are crucial. However, given the lack of satisfactory sensitivity and specificity of the currently available biomarkers, the majority of patients with HF are not diagnosed early and do not receive timely treatment. A number of studies have demonstrated that peripheral blood circulating nucleic acids [such as microRNAs (miRs), mRNA and DNA] are important for the diagnosis and monitoring of treatment response in HF. miRs have been attracting increasing attention as promising biomarkers, given their presence in body fluids and relative structural stability under diverse conditions of sampling. The aim of the present review was to analyze the associations between the mechanisms underlying the development of HF and the expression of miRs, and discuss the value of using circulating miRs as diagnostic biomarkers in HF management. In particular, miR-155, miR-22 and miR-133 appear to be promising for the diagnosis, prognosis and management of HF patients.
Collapse
Affiliation(s)
- Yao-Meng Huang
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wei-Wei Li
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun Wu
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mei Han
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bing-Hui Li
- Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|