1
|
Yang Y, Yuan L, Du Y, Ye M, Lu D, Huang S, Zhao J, Tibenda JJ, Meng F, Nan Y. Network pharmacology and in vitro experiments to investigate the anti-gastric cancer effects of paeoniflorin through the RAS/MAPK signaling pathway. Discov Oncol 2024; 15:659. [PMID: 39548020 PMCID: PMC11568095 DOI: 10.1007/s12672-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The aim of this study was to investigate the key targets and signaling pathways of paeoniflorin (PF) for the treatment of gastric cancer (GC). First, the differentially expressed genes (DEGs) of gastric cancer were obtained by analyzing GSE118916 Gene Chip, and then the active components of paeoniflorin and their targets of action were found. And the intersection genes of the two were analyzed for target and pathway analysis. In addition, cell viability after PF intervention was detected by CCK-8. Clone formation assay, wound scratch assay, transwell assay were used to detect cell migration and invasion. The qRT-PCR and Western blot methods were used to verify the mechanism of action. The results showed that a total of 286 paeoniflorin targets and 1799 DEGs were obtained. Secondly, we found that PF could treat gastric cancer through RAS/MAPK signaling pathway. In addition, through in vitro cellular experiments, we also found that PF had a significant therapeutic effect on gastric cancer. Therefore, we believe that PF inhibits the proliferation and metastasis of gastric cancer, and its effect may be exerted by regulating the RAS/MAPK signaling pathway. PF is a promising drug for the treatment of gastric cancer. Combined with the in vitro experiments, we found that the therapeutic effect of PF is related to the regulation of the RAS/MAPK signaling pathway, and the results of the present study preliminarily revealed its complex mechanism, which will lay the foundation for future clinical treatment.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Mengyi Ye
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Joanna Japhet Tibenda
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Zhou D, Wei Y, Sheng S, Wang M, Lv J, Zhao B, Chen X, Xu K, Bai L, Wu Y, Song P, Cao L, Zhou F, Zhang H, Shi Z, Su J. MMP13-targeted siRNA-loaded micelles for diagnosis and treatment of posttraumatic osteoarthritis. Bioact Mater 2024; 37:378-392. [PMID: 38689658 PMCID: PMC11059470 DOI: 10.1016/j.bioactmat.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Posttraumatic osteoarthritis (PTOA) patients are often diagnosed by X-ray imaging at a middle-late stage when drug interventions are less effective. Early PTOA is characterized by overexpressed matrix metalloprotease 13 (MMP13). Herein, we constructed an integrated diagnosis and treatment micelle modified with MMP13 enzyme-detachable, cyanine 5 (Cy5)-containing PEG, black hole quencher-3 (BHQ3), and cRGD ligands and loaded with siRNA silencing MMP13 (siM13), namely ERMs@siM13. ERMs@siM13 could be cleaved by MMP13 in the diseased cartilage tissues to detach the PEG shell, causing cRGD exposure. Accordingly, the ligand exposure promoted micelle uptake by the diseased chondrocytes by binding to cell surface αvβ3 integrin, increasing intracellular siM13 delivery for on-demand MMP13 downregulation. Meanwhile, the Cy5 fluorescence was restored by detaching from the BHQ3-containing micelle, precisely reflecting the diseased cartilage state. In particular, the intensity of Cy5 fluorescence generated by ERMs@siM13 that hinged on the MMP13 levels could reflect the PTOA severity, enabling the physicians to adjust the therapeutic regimen. Finally, in the murine PTOA model, ERMs@siM13 could diagnose the early-stage PTOA, perform timely interventions, and monitor the OA progression level during treatment through a real-time detection of MMP13. Therefore, ERMs@siM13 represents an appealing approach for early-stage PTOA theranostics.
Collapse
Affiliation(s)
- Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Shihao Sheng
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Bowen Zhao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hao Zhang
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
3
|
Wu T, Zhang H, Jin Y, Zhang M, Zhao Q, Li H, Wang S, Lu Y, Chen S, Du H, Liu T, Guo W, Liu W. The active components and potential mechanisms of Wuji Wan in the treatment of ethanol-induced gastric ulcer: An integrated metabolomics, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117901. [PMID: 38341112 DOI: 10.1016/j.jep.2024.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.
Collapse
Affiliation(s)
- Tiantai Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China
| | - Huan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yang Jin
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Ming Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qing Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Herong Li
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shouli Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Shuaishuai Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Huakang Du
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Weiyu Guo
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Wen Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Chen S, Kang P, Zhao Z, Zhang H, Li J, Xu K, Gong D, Jiao F, Wang H, Zhang M. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: an in vitro and in vivo study combined with bioinformatics analysis. Aging (Albany NY) 2024; 16:648-664. [PMID: 38194722 PMCID: PMC10817397 DOI: 10.18632/aging.205410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.
Collapse
Affiliation(s)
- Shuai Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhuanglin Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Hongyi Zhang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Jianliang Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kun Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Dawei Gong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Feng Jiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Meng Zhang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
5
|
Ye WD, Wang HM, Xu ZJ, Liang DS, Huang AR, Xu ZW, Hu XG, Jin YM. MCC950 Ameliorates Acute Exogenous Lipoid Pneumonia Induced by Sewing Machine Oil in Rats via the NF-κB/NLRP3 Inflammasome Pathway. In Vivo 2023; 37:2533-2542. [PMID: 37905651 PMCID: PMC10621416 DOI: 10.21873/invivo.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Acute exogenous lipoid pneumonia (AELP) is a rare disorder caused by intake of lipid formulations and is often underdiagnosed. Meanwhile, the mechanism of AELP is still underlying. MCC950, was previously found to significantly suppress the release of inflammatory cytokines IL-18 and IL-1β. However, the effect of MCC950 on AELP induced by sewing machine oil has not been reported. MATERIALS AND METHODS The NLRP3, NF-[Formula: see text]B p65, caspase-1 and IL-1β expression in lung tissues were compared between a rat model of AELP and control rats using western blotting and real-time quantitative assay. Moreover, haematoxylin and eosin (H&E) staining was performed to elucidate the mechanisms by which MCC950 ameliorates sewing machine oil-induced AELP in vivo. RESULTS MCC950 reduced the expression of NF-[Formula: see text]B p65 in the lung samples of the treatment group and further down-regulated the NLRP3 and caspase-1 levels while inhibited the production of IL-1β. Besides, decreases in inflammatory cell infiltration in the lung were shown using H&E staining. CONCLUSION MCC950 ameliorates sewing machine oil-induced acute exogenous lipoid pneumonia in rats through inhibition of the NF-[Formula: see text]B/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Wan-Ding Ye
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Hua-Min Wang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Zi-Jin Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, P.R. China
| | - Dong-Shi Liang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Ai-Rong Huang
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhi-Wei Xu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiao-Guang Hu
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yi-Mei Jin
- Department of Pediatrics, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China;
| |
Collapse
|
6
|
Wu L, Tang R, Xiong W, Song S, Guo Q, Zhang Q. Paeoniflorin shows chondroprotective effects under IL-1β stress by regulating circ-PREX1/miR-140-3p/WNT5B axis. J Orthop Surg Res 2023; 18:766. [PMID: 37817257 PMCID: PMC10566156 DOI: 10.1186/s13018-023-04238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and degenerative bone and joint disease, and paeoniflorin shows anti-arthritis role in OA. This study planned to investigate the mechanism related to chondroprotective role of paeoniflorin in OA. METHODS Real-time quantitative PCR and western blotting were performed to measure expression levels of circ-PREX1, microRNA (miR)-140-3p, Wingless-type MMTV integration site family, member 5B (WNT5B), B cell lymphoma (Bcl)-2, and Bcl-2 Associated X Protein (Bax). MTT assay, EdU assay, flow cytometry and enzyme-linked immunosorbent assay evaluated cell viability, proliferation, apoptosis and inflammatory response, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay identified the relationship among circ-PREX1, miR-140-3p, and WNT5B. RESULTS IL-1β highly induced apoptosis rate, Bax expression and TNF-α product, accompanied with decreased cell viability, cell proliferation and IL-10 secretion, whereas these effects were partially reversed after paeoniflorin pretreatment. Expression of circ-PREX1 was upregulated and miR-140-3p was downregulated in cartilage tissues of patients with knee OA (KOA) and IL-1β-induced human chondrocytes (C28/I2). Circ-PREX1 overexpression and miR-140-3p silencing attenuated the suppressive effect of paeoniflorin in IL-1β-induced C28/I2 cells. Furthermore, miR-140-3p was negatively regulated by circ-PREX1. WNT5B was a downstream target of miR-140-3p and could be modulated by the circ-PREX1/miR-140-3p pathway in IL-1β-induced C28/I2 cells. CONCLUSION Paeoniflorin might protect human chondrocytes from IL-1β-induced inflammatory injury via circ-PREX1-miR-140-3p-WNT5B pathway, suggesting a potential preventative agent and a novel target for the treatment of KOA.
Collapse
Affiliation(s)
- Lan'e Wu
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Runke Tang
- Department of Rehabilitation, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No. 90, Bayi Road, Nanchang City, 330003, Jiangxi Province, People's Republic of China.
| | - Weibiao Xiong
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Shuhua Song
- Department of Dermatology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Qian Guo
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Qingqing Zhang
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| |
Collapse
|
7
|
Sun S, Wang Y, Li J, Wu A, Xie Y, Wang Z, Zhao X, Wang D, Wu X, Liu X. Network Pharmacology-Based Approach to Investigate the Active Ingredients and Therapeutic Mechanisms of Jingu Tongxiao Pill against Osteoarthritis. ACS OMEGA 2023; 8:31529-31540. [PMID: 37663478 PMCID: PMC10468769 DOI: 10.1021/acsomega.3c04724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023]
Abstract
This study aimed to investigate the active ingredients and therapeutic mechanisms of Jingu Tongxiao Pill (JGTXP), a commonly used Chinese patent medicine, in treating osteoarthritis (OA) via network pharmacology analysis combined with experimental validation. First, we administered JGTXP to rat plasma and identified the candidate active compounds. Next, target prediction, protein-protein interaction, compound-target network construction, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for JGTXP. Lastly, the network-derived key targets and pathways were validated in vitro and in vivo. Finally, we identified 106 compounds in JGTXP and 24 absorbed compounds in the rat plasma. Network analysis revealed that JGTXP interferes with OA mainly via regulating the inflammatory response, collagen catabolic process, and osteoclast differentiation, and the nuclear factor kappa B (NF-κB) signaling pathway plays a pivotal role in these processes. Experimentally, JGTXP exerted potential protective effects on articular cartilage and inhibited expression of inflammatory mediators and collagen catabolism-related proteins, including interleukin 1 beta (IL-1β), interleukin 6, tumor necrosis factor alpha (TNF-α), and matrix metalloproteinase (MMP) 3 and MMP13, in a papain-induced OA rat model. Consistently, mRNA expression levels of these factors and nitric oxide release were suppressed by JGTXP in an LPS-induced RAW 264.7 inflammation model. The reporter gene assay showed that JGTXP could reduce the transcriptional activity of NF-κB. Consecutive western blot analysis demonstrated that nuclear NF-κB p65, inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) expression were inhibited while cytoplasmic NF-κB p65 was upregulated by JGTXP. Using a combination of chemical profiling, network pharmacology analysis, and experimental validation, we preliminarily clarified the active ingredients of JGTXP intervention for OA and demonstrated that JGTXP ameliorates OA, at least partially, by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shi Sun
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Yifang Wang
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Jinhu Li
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
- Academy
of Chinese Medical Sciences, Henan University
of Chinese Medicine, Zhengzhou 450046, China
| | - Ailing Wu
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Yan Xie
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Zhao Wang
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Xinjie Zhao
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Dandan Wang
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Xiaolong Wu
- Department
of Pharmacy, Luoyang Orthopedic-Traumatological
Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang 471000, China
| | - Xinguang Liu
- Academy
of Chinese Medical Sciences, Henan University
of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
8
|
Chen WJ, Zhuang Y, Peng W, Cui W, Zhang SJ, Wang JW. Du Huo Ji Sheng Tang inhibits Notch1 signaling and subsequent NLRP3 activation to alleviate cartilage degradation in KOA mice. Chin Med 2023; 18:80. [PMID: 37386638 DOI: 10.1186/s13020-023-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) has a complex pathological mechanism and is difficult to cure. The traditional medicine Du Huo Ji Sheng Tang (DHJST) has been used for the treatment of KOA for more than one thousand years, but its mechanism for treating KOA has not been revealed. In our previous study, we confirmed that DHJST inhibited the activation of NLRP3 signaling in rats and humans. In the current study, we aimed to determine how DHJST inhibits NLRP3 to alleviate knee cartilage damage. METHODS Mice were injected with NLRP3 shRNA or Notch1-overexpressing adenovirus into the tail vein to construct systemic NLRP3 low-expressing or Notch1 high-expressing mice. Mice were injected with papain into the knee joint to replicate the KOA model. DHJST was used to treat KOA model mice with different backgrounds. The thickness of the right paw was measured to evaluate toe swelling. The pathohistological changes and the levels of IL-1β, MMP2, NLRP3, Notch1, collagen 2, collagen 4, HES1, HEY1, and Caspase3 were detected by HE staining, ELISA, immunohistochemical staining, western blotting, or real-time qPCR. RESULTS DHJST reduced tissue swelling and serum and knee cartilage IL-1β levels, inhibited cartilage MMP2 expression, increased collagen 2 and collagen 4 levels, decreased Notch1 and NLRP3 positive expression rates in cartilage, and decreased HES1 and HEY1 mRNA levels in KOA model mice. In addition, NLRP3 interference decreased cartilage MMP2 expression and increased collagen 2 and collagen 4 levels without affecting the expression levels of notch1, HES1 and HEY1 mRNA levels in the synovium of KOA mice. In KOA mice with NLRP interference, DHJST further reduced tissue swelling and knee cartilage damage in mice. Finally, Notch1-overexpressing mice not only showed more severe tissue swelling and knee cartilage degradation but also abolished the therapeutic effect of DHJST on KOA mice. Importantly, the inhibitory effects of DHJST on the mRNA expression of NLRP3, Caspase3 and IL-1β in the knee joint of KOA mice were completely limited after Notch1 overexpression. CONCLUSION DHJST significantly reduced inflammation and cartilage degradation in KOA mice by inhibiting Ntoch1 signaling and its subsequent NLRP3 activation in the knee joint.
Collapse
Affiliation(s)
- Wen-Jin Chen
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Yin Zhuang
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Wei Peng
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Wei Cui
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Shu-Jun Zhang
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China.
| | - Jian-Wei Wang
- Department of Orthopaedics, Wuxi Hospital of Traditional Chinese Medicine, No. 8 West of Zhongnan Road, Wuxi, 214071, China.
| |
Collapse
|
9
|
Ragni E, Perucca Orfei C, Valli F, Zagra L, de Girolamo L. Molecular Characterization of Secreted Factors and Extracellular Vesicles-Embedded miRNAs from Bone Marrow-Derived Mesenchymal Stromal Cells in Presence of Synovial Fluid from Osteoarthritis Patients. BIOLOGY 2022; 11:1632. [PMID: 36358333 PMCID: PMC9687557 DOI: 10.3390/biology11111632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 02/07/2024]
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs)-based therapies show a great potential to manage inflammation and tissue degeneration in osteoarthritis (OA) patients. Clinical trials showed the ability to manage pain and activation of immune cells and allowed restoration of damaged cartilage. To date, a molecular fingerprint of BMSC-secreted molecules in OA joint conditions able to support clinical outcomes is missing; the lack of that molecular bridge between BMSC activity and clinical results hampers clinical awareness and translation into practice. In this study, BMSCs were cultured in synovial fluid (SF) obtained from OA patients and, for the first time, a thorough characterization of soluble factors and extracellular vesicles (EVs)-embedded miRNAs was performed in this condition. Molecular data were sifted through the sieve of molecules and pathways characterizing the OA phenotype in immune cells and joint tissues. One-hundred and twenty-five secreted factors and one-hundred and ninety-two miRNAs were identified. The combined action of both types of molecules was shown to, first, foster BMSCs interaction with the most important OA immune cells, such as macrophages and T cells, driving their switch towards an anti-inflammatory phenotype and, second, promote cartilage homeostasis assisting chondrocyte proliferation and attenuating the imbalance between destructive and protective extracellular matrix-related players. Overall, molecular data give an understanding of the clinical results observed in OA patients and can enable a faster translation of BMSC-based products into everyday clinical practice.
Collapse
Affiliation(s)
- Enrico Ragni
- Laboratorio di Biotecnologie applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
| | - Federico Valli
- Chirurgia Articolare Sostitutiva e Chirurgia Ortopedica (CASCO), IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy
| |
Collapse
|
10
|
Hu S, Wang S, He J, Bian Y. Tetramethylpyrazine alleviates endoplasmic reticulum stress‑activated apoptosis and related inflammation in chondrocytes. Mol Med Rep 2021; 25:12. [PMID: 34779501 PMCID: PMC8600404 DOI: 10.3892/mmr.2021.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Excessive apoptosis of chondrocytes and degradation of the extracellular matrix (ECM) contribute to the typical pathological characteristics of osteoarthritis (OA). Various studies have reported that tetramethylpyrazine (TMP) protects against multiple disorders by inhibiting inflammation and oxidative stress. The present study investigated the effects of TMP on chondrocytes and evaluated the associated mechanisms. To determine the effect of TMP on OA and the underlying mechanisms, chondrocytes were incubated with TMP and IL-1β or thapsigargin (TG) Western blotting assays were performed to examine the expression levels of endoplasmic reticulum (ER) stress proteins, and TUNEL staining, fluorescence immunostaining and reverse transcription-quantitative PCR were used to determine the apoptosis levels, and catabolic and inflammatory factors. It was found that TMP protected chondrocytes by suppressing IL-1β-induced expression of glucose-regulated protein 78 (GRP78) and CHOP (an apoptotic protein). TMP regulated the TG-mediated upregulated expression of GRP78 and CHOP in the chondrocytes of rats, as well as markedly suppressed levels of ER stress-triggered inflammatory cytokines (TNF-α and IL-6). Furthermore, TMP modulated TG-induced changes in ECM catabolic metabolism in rat chondrocytes. Collectively, TMP alleviated ER-stress-activated apoptosis and related inflammation in chondrocytes, indicating that it has therapeutic potential for the treatment of OA.
Collapse
Affiliation(s)
- Shuai Hu
- Joint and Traumatology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Sheng Wang
- Joint and Traumatology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Jie He
- Joint and Traumatology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yangyang Bian
- Department of Trauma Medical Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
11
|
Shu H, Zhao H, Shi Y, Lu C, Li L, Zhao N, Lu A, He X. Transcriptomics-based analysis of the mechanism by which Wang-Bi capsule alleviates joint destruction in rats with collagen-induced arthritis. Chin Med 2021; 16:31. [PMID: 33845855 PMCID: PMC8042720 DOI: 10.1186/s13020-021-00439-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied with joint destruction that often leads to disability. Wang-Bi capsule (WB), a traditional Chinese medicine-based herbs formula, has exhibited inhibition effect on joint destruction of collagen-induced arthritis (CIA) animal model in our previous study. But its molecular mechanisms are still obscure. METHODS CIA rats were treated intragastrical with WB for eight weeks, and the effect of joints protection were evaluated by hematoxylin and eosin (H&E) staining, safranin O fast green staining, tartrate-resistant acid phosphatase (TRAP) staining and micro‑CT scanning analysis. The transcriptomic of tarsal joints were used to investigate how WB alleviated joint destruction. RESULTS The histological examination of ankle joints showed WB alleviated both cartilage damage and bone destruction of CIA rats. This protective effect on joints were further evidenced by micro-CT analysis. The transcriptomic analysis showed that WB prominently changed 12 KEGG signaling pathways ("calcium signaling pathway", "cAMP signaling pathway", "cell adhesion molecules", "chemokine signaling pathway", "complement and coagulation cascades", "MAPK signaling pathway", "NF-kappa B signaling pathway", "osteoclast differentiation", "PI3K-Akt signaling pathway", "focal adhesion", "Gap junction" and "Rap1 signaling pathway") associated with bone or cartilage. Several genes (including Il6, Tnfsf11, Ffar2, Plg, Tnfrsf11b, Fgf4, Fpr1, Siglec1, Vegfd, Cldn1, Cxcl13, Chad, Arrb2, Fgf9, Egfr) regulating bone resorption, bone formation and cartilage development were identified by further analysis. Meanwhile, these differentially expressed genes were validated by real-time quantitative PCR. CONCLUSIONS Overall, the protective effect of WB treatment on joint were confirmed in CIA rats, and its basic molecular mechanisms may be associated with regulating some genes (including Il6, Tnfsf11, Ffar2 and Plg etc.) involved in bone resorption, bone formation and cartilage development.
Collapse
Affiliation(s)
- Haiyang Shu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hanxiao Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingjie Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Therapeutic Single Compounds for Osteoarthritis Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020131. [PMID: 33562161 PMCID: PMC7914480 DOI: 10.3390/ph14020131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease for which an effective disease-modifying therapy is not available. Natural compounds derived from plants have been traditionally used in the clinic to treat OA. Over the years, many studies have explored the treatment of OA using natural extracts. Although various active natural extracts with broad application prospects have been discovered, single compounds are more important for clinical trials than total natural extracts. Moreover, although natural extracts exhibit minimal safety issues, the cytotoxicity and function of all single compounds in a total extract remain unclear. Therefore, understanding single compounds with the ability to inhibit catabolic factor expression is essential for developing therapeutic agents for OA. This review describes effective single compounds recently obtained from natural extracts and the possibility of developing therapeutic agents against OA using these compounds.
Collapse
|
13
|
Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP, Wang CM. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis 2020; 11:978. [PMID: 33188176 PMCID: PMC7666141 DOI: 10.1038/s41419-020-03178-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is featured with inflammation and extensive lung remodeling caused by overloaded deposition of extracellular matrix. Scutellarin is the major effective ingredient of breviscapine and its anti-inflammation efficacy has been reported before. Nevertheless, the impact of scutellarin on IPF and the downstream molecular mechanism remain unclear. In this study, scutellarin suppressed BLM-induced inflammation via NF-κB/NLRP3 pathway both in vivo and in vitro. BLM significantly elevated p-p65/p65 ratio, IκBα degradation, and levels of NLRP3, caspase-1, caspase-11, ASC, GSDMDNterm, IL-1β, and IL-18, while scutellarin reversed the above alterations except for that of caspase-11. Scutellarin inhibited BLM-induced epithelial-mesenchymal transition (EMT) process in vivo and in vitro. The expression levels of EMT-related markers, including fibronectin, vimentin, N-cadherin, matrix metalloproteinase 2 (MMP-2) and MMP-9, were increased in BLM group, and suppressed by scutellarin. The expression level of E-cadherin showed the opposite changes. However, overexpression of NLRP3 eliminated the anti-inflammation and anti-EMT functions of scutellarin in vitro. In conclusion, scutellarin suppressed inflammation and EMT in BLM-induced pulmonary fibrosis through NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Ling Peng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Li Wen
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Qing-Feng Shi
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Jie Meng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Cheng-Ping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
| | - Chang-Ming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China.
| |
Collapse
|
14
|
Ye J, Xu B, Fan B, Zhang J, Yuan F, Chen Y, Sun Z, Yan X, Song Y, Song S, Yang M, Yu JK. Discovery of Selenocysteine as a Potential Nanomedicine Promotes Cartilage Regeneration With Enhanced Immune Response by Text Mining and Biomedical Databases. Front Pharmacol 2020; 11:1138. [PMID: 32792959 PMCID: PMC7394085 DOI: 10.3389/fphar.2020.01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Unlike bone tissue, little progress has been made regarding cartilage regeneration, and many challenges remain. Furthermore, the key roles of cartilage lesion caused by traumas, focal lesion, or articular overstress remain unclear. Traumatic injuries to the meniscus as well as its degeneration are important risk factors for long-term joint dysfunction, degenerative joint lesions, and knee osteoarthritis (OA) a chronic joint disease characterized by degeneration of articular cartilage and hyperosteogeny. Nearly 50% of the individuals with meniscus injuries develop OA over time. Due to the limited inherent self-repair capacity of cartilage lesion, the Biomaterial drug-nanomedicine is considered to be a promising alternative. Therefore, it is important to elucidate the gene potential regeneration mechanisms and discover novel precise medication, which are identified through this study to investigate their function and role in pathogenesis. Methods We downloaded the mRNA microarray statistics GSE117999, involving paired cartilage lesion tissue samples from 12 OA patients and 12 patients from a control group. First, we analyzed these statistics to recognize the differentially expressed genes (DEGs). We then exposed the gene ontology (GO) annotation and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses for these DEGs. Protein-protein interaction (PPI) networks were then constructed, from which we attained eight significant genes after a functional interaction analysis. Finally, we identified a potential nanomedicine attained from this assay set, using a wide range of inhibitor information archived in the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results Sixty-six DEGs were identified with our standards for meaning (adjusted P-value < 0.01, |log2 - FC| ≥1.2). Furthermore, we identified eight hub genes and one potential nanomedicine - Selenocysteine based on these integrative data. Conclusion We identified eight hub genes that could work as prospective biomarkers for the diagnostic and biomaterial drug treatment of cartilage lesion, involving the novel genes CAMP, DEFA3, TOLLIP, HLA-DQA2, SLC38A6, SLC3A1, FAM20A, and ANO8. Meanwhile, these genes were mainly associated with immune response, immune mediator induction, and cell chemotaxis. Significant support is provided for obtaining a series of novel gene targets, and we identify potential mechanisms for cartilage regeneration and final nanomedicine immunotherapy in regenerative medicine.
Collapse
Affiliation(s)
- Jing Ye
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Bingbing Xu
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Baoshi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jiying Zhang
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Fuzhen Yuan
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yourong Chen
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Zewen Sun
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Xin Yan
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yifan Song
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Shitang Song
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Meng Yang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
15
|
Zeng YF, Wang R, Bian Y, Chen WS, Peng L. Catalpol Attenuates IL-1β Induced Matrix Catabolism, Apoptosis and Inflammation in Rat Chondrocytes and Inhibits Cartilage Degeneration. Med Sci Monit 2019; 25:6649-6659. [PMID: 31484919 PMCID: PMC6752111 DOI: 10.12659/msm.916209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chondrocyte dysfunction and apoptosis are 2 major features during the progression of osteoarthritis. Catalpol, an iridoid glycoside isolated from the root of Rehmannia, is a valuable medication with anti-inflammatory, anti-oxidative, and anti-apoptotic effects in various diseases. However, whether catalpol protects against osteoarthritis has not been investigated. MATERIAL AND METHODS To assess the role of catalpol in osteoarthritis and the potential mechanism of action, chondrocytes were treated with interleukin (IL)-1ß and various concentrations of catalpol. Catabolic metabolism, apoptotic level and relative signaling pathway were measured by western blot, real-time polymerase chain reaction and immunofluorescence staining. Meanwhile, we assess the cartilage degeneration in an experimental rat model using Safranin O fast green staining and cartilage was graded according to the Osteoarthritis Research Society International (OARSI) system. RESULTS The results showed that catalpol prevented chondrocyte apoptotic level triggered by IL-1ß, suppressed the release of catabolic enzymes, and inhibited the degradation of extracellular matrix induced by IL-1ß. Catalpol also inhibited the nuclear factor kappa B (NF-kappaB) pathway, reduced the production of inflammatory cytokines (IL-6, tumor necrosis factor-alpha) in IL-1ß-treated chondrocytes, and partially reversed cartilage degeneration in the knee joint in animal model of osteoarthritis. CONCLUSIONS Our work suggested that catalpol treatment attenuates IL-1ß-induced inflammatory response and catabolism in rat chondrocytes by inhibiting the NF-kappaB pathway, suggesting the therapeutic potential of catalpol for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yun-Fu Zeng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Rong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Yang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Wen-Sheng Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| |
Collapse
|