1
|
Radicchi MA, Farias GR, Mello da Silva VC, Machado VP, de Souza DG, Figueiró Longo JP, Báo SN. Prevention of chemotherapy-related bone loss with doxorubicin-loaded solid lipid nanoparticles. Nanomedicine (Lond) 2024; 19:1895-1911. [PMID: 39109488 PMCID: PMC11457634 DOI: 10.1080/17435889.2024.2382083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 10/05/2024] Open
Abstract
Aim: Breast cancer and its metastases involve high mortality even with advances in chemotherapy. Solid lipid nanoparticles provide a platform for drug delivery, reducing side effects and treatment-induced bone loss. A solid nanoparticle containing doxorubicin was evaluated for its ability to prevent bone loss in a pre-clinical breast cancer model.Methods: We investigated the effects of SLNDox in an aggressive metastatic stage IV breast cancer model, which has some important features that are interesting for bone loss investigation. This study evaluates bone loss prevention potential from solid lipid nanoparticles containing doxorubicin breast cancer treatment, an evaluation of the attenuation of morphological changes in bone tissue caused by the treatment and the disease and an assessment of bone loss imaging using computed tomography and electron microscopy.Results: Chemotherapy-induced bone loss was also observed in tumor-free animals; a solid lipid nanoparticle containing doxorubicin prevented damage to the growth plate and to compact and cancellous bones in the femur of tumor-bearing and healthy animals.Conclusion: The association of solid lipid nanoparticles with chemotherapeutic drugs with proven efficacy promotes the prevention of serious consequences of chemotherapy, reducing tumor progression, increasing quality of life and improving prognosis and survival.
Collapse
Affiliation(s)
- Marina Arantes Radicchi
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Victor Carlos Mello da Silva
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Victória Paz Machado
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Danielle Galdino de Souza
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Sônia Nair Báo
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
2
|
Chen Y, Shen Y, Zhang H, Wang X, Xu Y, Zhang J, Zhao W, Zhao R, Liu Z, Cheng L, Ge J. Inflammatory Reprogramming Mediates Changes in Three-Dimensional Strain Capacity and Cardiac Function in Beagle Dogs with Doxorubicin-Related Cardiomyopathy. Rev Cardiovasc Med 2024; 25:62. [PMID: 39077361 PMCID: PMC11263182 DOI: 10.31083/j.rcm2502062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 07/31/2024] Open
Abstract
Background The cardiotoxicity of doxorubicin (DOX) limits its use in cancer treatment. To address this limitation, we developed a novel animal model that uses beagle dogs to investigate DOX-induced cardiac disorders. Unfortunately, the lack of effective cardioprotection strategies against DOX-induced cardiotoxicity poses a significant challenge. To establish a canine model for low-mortality DOX-induced cardiac dysfunction and explore the relationship between inflammatory reprogramming and DOX-related cardiotoxicity. Methods Twenty male beagle dogs aged two years were randomly assigned into the DOX (N = 10) and control (CON) (N = 10) groups. DOX was infused (1.5 mg/kg) every two weeks until doses cumulatively reached 12 mg/kg. Serum biomarkers and myocardial pathology were evaluated, while real-time fluorescence-based quantitative polymerase chain reaction (RTFQ-PCR), two- and three-dimensional echocardiography (2DE and RT3DE), functional enrichment, and matrix correlation were also performed. Results In the DOX group, high-sensitive cardiac troponin T (hs cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were significantly increased. Myocardial pathology indicated early to medium myocardial degeneration via a decreased cardiomyocyte cross-sectional area (CSA). Increased levels of inflammatory gene transcripts (interleukin 6 (IL6), tumor necrosis factor (TNF), transforming growth factor β (TGF β ), intercellular adhesion molecule 1 (ICAM1), interleukin 1 (IL1), interleukin 1 β (IL1 β ), and interleukin 8 (IL8)), of collagen metabolism and deposition regulatory genes (matrix metalloproteinase (MMP) family and tissue inhibitor of matrix metalloproteinase (TIMP) family), and the natriuretic peptide family (NPS) (natriuretic peptide A, B and C (NPPA, NPPB, and NPPC)) were observed. Strain abnormalities in the right ventricular longitudinal septal strain (RVLSS), right ventricular longitudinal free-wall strain (RVLFS), left ventricular global longitudinal strain (LVGLS), and left ventricular global circumferential strain (LVGCS) were detected at week 28 (vs. week 0 or CON group, p < 0.05, respectively). A significant decline in RVLSS and RVLFS occurred at week 16, which was earlier than in the corresponding left ventricular areas. A significant right ventricular ejection fraction (RVEF) decline was noted at week 16 (vs. week 0, 33.92 ± 3.59% vs. 38.58 ± 3.58%, p < 0.05), which was 12 weeks earlier than for the left ventricular ejection fraction (LVEF), which occurred at week 28 (vs. week 0, 49.02 ± 2.07% vs. 54.26 ± 4.38%, p < 0.01). The right ventricular strain and functional damages correlated stronger with inflammatory reprogramming (most R from 0.60 to 0.90) than the left ones (most R from 0.30 to 0.65), thereby indicating a more pronounced correlation. Conclusions Inflammatory reprogramming mediated disorders of strain capacity and cardiac function predominantly in the right side of the heart in the newly established DOX-related cardiomyopathy beagle dog model.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, National Health Commission, 200032 Shanghai, China
| | - Yihui Shen
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Hui Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Xuejun Wang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Yuchen Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, National Health Commission, 200032 Shanghai, China
| | - Jian Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, China
| | - Rui Zhao
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080 Shanghai, China
| | - Leilei Cheng
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, National Health Commission, 200032 Shanghai, China
| |
Collapse
|
3
|
Wagener N, Lehmann W, Weiser L, Jäckle K, Di Fazio P, Schilling AF, Böker KO. Psychostimulants Modafinil, Atomoxetine and Guanfacine Impair Bone Cell Differentiation and MSC Migration. Int J Mol Sci 2022; 23:10257. [PMID: 36142172 PMCID: PMC9499654 DOI: 10.3390/ijms231810257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common worldwide mental disorders in children, young and adults. If left untreated, the disorder can continue into adulthood. The abuse of ADHD-related drugs to improve mental performance for studying, working and everyday life is also rising. The potentially high number of subjects with controlled or uncontrolled use of such substances increases the impact of possible side effects. It has been shown before that the early ADHD drug methylphenidate influences bone metabolism negatively. This study focused on the influence of three more recent cognitive enhancers, modafinil, atomoxetine and guanfacine, on the differentiation of mesenchymal stem cells to osteoblasts and on their cell functions, including migration. Human mesenchymal stem cells (hMSCs) were incubated with a therapeutic plasma dosage of modafinil, atomoxetine and guanfacine. Gene expression analyses revealed a high beta-2 adrenoreceptor expression in hMSC, suggesting it as a possible pathway to stimulate action. In bone formation assays, all three cognitive enhancers caused a significant decrease in the mineralized matrix and an early slight reduction of cell viability without triggering apoptosis or necrosis. While there was no effect of the three substances on early differentiation, they showed differing effects on the expression of osterix (OSX), receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in the later stages of osteoblast development, suggesting alternative modes of action. All three substances significantly inhibited hMSC migration. This effect could be rescued by a selective beta-blocker (Imperial Chemical Industries ICI-118,551) in modafinil and atomoxetine, suggesting mediation via beta-2 receptor stimulation. In conclusion, modafinil, atomoxetine and guanfacine negatively influence hMSC differentiation to bone-forming osteoblasts and cell migration through different intracellular pathways.
Collapse
Affiliation(s)
- Nele Wagener
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Lukas Weiser
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Katharina Jäckle
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Kai O. Böker
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| |
Collapse
|
4
|
Min SK, Kim M, Park JB. Insulin-like growth factor 2-enhanced osteogenic differentiation of stem cell spheroids by regulation of Runx2 and Col1 expression. Exp Ther Med 2021; 21:383. [PMID: 33680105 PMCID: PMC7918416 DOI: 10.3892/etm.2021.9814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor 2 (IGF-2) is a growth factor that is involved in various functions of cells, including stem cells. The effects of IGF-2 on the cellular viability and osteogenic differentiation of stem cell spheroids were investigated in the present study. Stem cell spheroids were formed using concave microwells in the presence of IGF-2 at final concentrations of 0, 10 and 100 ng/ml. Cellular viability was measured qualitatively using a microscope and quantitatively using an assay kit based on water-soluble tetrazolium salt. The level of alkaline phosphatase activity, and an anthraquinone dye assay for calcium deposit evaluation, were used to assess osteogenic differentiation. A quantitative PCR analysis was conducted to evaluate the expression of Runx2 and Col1. Spheroid formation was noticed on day 1 in the microwells, and the spheroidal shape was maintained up to day 7. The cell viability assay values for IGF-2 at 0, 10 and 100 ng/ml at day 1 were 0.193±0.002, 0.191±0.002 and 0.201±0.006, respectively (P>0.05). The absorbance values at 405 nm for the alkaline phosphatase activity assays on day 21 were 0.221±0.006, 0.375±0.010 and 0.280±0.015 for IGF-2 at 0, 10 and 100 ng/ml, respectively. There were significantly higher values for IGF-2 in the 10 and 100 ng/ml groups when compared with the control (P<0.05). Significantly higher Alizarin red staining was noted for IGF-2 in the 10 ng/ml group when compared with the unloaded control at day 21 (P<0.05). Quantitative PCR revealed that mRNA levels of Runx2 and Col1 were significantly higher at 100 ng/ml on day 7. Conclusively, the present study demonstrated that the application of IGF-2 increased alkaline phosphatase activity, Alizarin red staining, and Runx2 and Col1 expression of stem cell spheroids.
Collapse
Affiliation(s)
- Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minji Kim
- College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Lee H, Song Y, Park YH, Uddin MS, Park JB. Evaluation of the Effects of Cuminum cyminum on Cellular Viability, Osteogenic Differentiation and Mineralization of Human Bone Marrow-Derived Stem Cells. ACTA ACUST UNITED AC 2021; 57:medicina57010038. [PMID: 33406654 PMCID: PMC7823674 DOI: 10.3390/medicina57010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Background and Objectives: Cuminum cyminum L. has long been used in the treatment of various diseases in multiple geographical regions. This study was performed to determine the effects of C. cyminum methanolic extract (CCT) on the cellular viability, alkaline phosphatase activity and mineralization of human mesenchymal stem cells. Materials and Methods: Bone marrow-derived stem cells were cultured in the presence of CCT at concentrations of 0, 0.001, 0.01, 0.1 and 1 μg/mL. Evaluations of cell morphology were performed on days 1, 3, 7 and 14. Cellular viability was evaluated on days 1, 3, 5 and 7. On the 7th and 14th day, alkaline phosphatase activity measurements and Alizarin red S staining were conducted to assess the osteogenic differentiation of stem cells. A real-time polymerase chain reaction was used to determine the expression levels of RUNX2, BSP, OCN, COL2A1 and β-catenin mRNAs. Results: Stem cells in the control group showed fibroblast-like morphology and the addition of CCT at 0.001, 0.01, 0.1 and 1 μg/mL did not generate noticeable changes in morphology compared with the untreated control group. The application of CCT did not produce significant changes in cellular viability or alkaline phosphatase activity compared with controls. Alizarin Red S staining was significantly increased with the application of CCT. Treatment with CCT increased the expressions of RUNX2, BSP and OCN. Conclusions: These results indicate that CCT enhanced the osteogenic differentiation of stem cells derived from bone marrow by regulating the expressions of RUNX2, BSP and OCN. Thus, the use of CCT may be applied to achieve beneficial effects on the mineralization of stem cells.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.L.); (Y.S.)
| | - Youngmin Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.L.); (Y.S.)
| | | | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.L.); (Y.S.)
- Correspondence: ; Tel.: +82-2-2258-6290
| |
Collapse
|
6
|
Min SK, Kim M, Park JB. Bone morphogenetic protein 2-enhanced osteogenic differentiation of stem cell spheres by regulation of Runx2 expression. Exp Ther Med 2020; 20:79. [PMID: 32968436 PMCID: PMC7499948 DOI: 10.3892/etm.2020.9206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is a growth factor that is used to induce osteogenic differentiation in stem cells. The present study assessed the effects of BMP-2 on stem cell spheroid morphology, viability and osteogenic differentiation. Stem cell spheres were constructed and treated with BMP-2 at predetermined concentrations (0-100 ng/ml) using concave microwells. Cell viability was qualitatively and quantitatively analyzed via microscopy and a water-soluble tetrazolium salt assay kit, respectively. Alkaline phosphatase activity was assessed and an anthraquinone dye for calcium deposit evaluation was performed to determine osteogenic differentiation. The expressions of (runt-related transcription factor 2) and collagen 1 were also determined via quantitative PCR. Spherical shapes were formed using concave microwells on day 1, which were maintained up to day 21. On day 1, the relative cell viability of 0, 10 and 100 ng/ml BMP-2 treated cells was 100.0±1.9, 97.3±4.4 and 101.3±2.6%, respectively. Significantly higher values for alkaline phosphatase activity were determined in the 100 ng/ml treated group when compared with the control group. Additionally, Runx2 mRNA levels were significantly higher in the 100 ng/ml BMP-2 group compared with the control group, as determined via quantitative PCR. The results of the present study indicated that BMP-2 enhanced the differentiation of stem cell spheres, which was demonstrated by increased alkaline phosphatase activity and Runx2 expression.
Collapse
Affiliation(s)
- Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minji Kim
- College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
7
|
Son J, Tae JY, Min SK, Ko Y, Park JB. Fibroblast growth factor-4 maintains cellular viability while enhancing osteogenic differentiation of stem cell spheroids in part by regulating RUNX2 and BGLAP expression. Exp Ther Med 2020; 20:2013-2020. [PMID: 32782511 PMCID: PMC7401302 DOI: 10.3892/etm.2020.8951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) are growth factors that were initially identified as proteins that stimulate fibroblast proliferation. The aim of the present study was to examine the effects of FGF-4 on the morphology, cellular viability and osteogenic differentiation of stem cell spheroids. Stem cell spheroids were generated using concave microwells in the presence of FGF-4 at concentrations of 0, 50, 100 and 200 ng/ml. Cellular viability was qualitatively assessed by a fluorometric live/dead assay using a microscope and quantitatively determined by using Cell Counting Kit-8. Furthermore, alkaline phosphatase activity and calcium deposition were determined to assess osteogenic differentiation. Reverse transcription-quantitative PCR (RT-qPCR) was performed to evaluate the mRNA expression levels of Runt-related transcription factor 2 (RUNX2) and bone γ-carboxyglutamate protein (BGLAP). Spheroidal shapes were achieved in the microwells on day 1 and a significant increase in the spheroid diameter was observed in the 200 ng/ml FGF-4 group compared with the control group on day 1 (P<0.05). The results regarding viability using Cell Counting Kit-8 in the presence of FGF-4 at 50, 100 and 200 ng/ml at day 1 were 98.0±2.5, 106.2±17.6 and 99.5±6.0%, respectively, when normalized to the control group (P>0.05). Furthermore, the alkaline phosphatase activity was significantly elevated in the 200 ng/ml group, when compared with the control group. The RT-qPCR results demonstrated that the mRNA expression levels of RUNX2 and BGLAP were significantly increased at 200 ng/ml. Therefore, the present results suggested that the application of FGF-4 maintained cellular viability while enhancing the osteogenic differentiation of stem cell spheroids, at least partially by regulating RUNX2 and BGLAP expression levels.
Collapse
Affiliation(s)
- Juwan Son
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Yong Tae
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
8
|
Lee H, Son J, Min SK, Na CB, Yi G, Koo H, Park JB. A Study of the Effects of Doxorubicin-Containing Liposomes on Osteogenesis of 3D Stem Cell Spheroids Derived from Gingiva. MATERIALS 2019; 12:ma12172693. [PMID: 31443583 PMCID: PMC6747561 DOI: 10.3390/ma12172693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
The objective of the present investigation is to determine the effects of neutral, anionic, and cationic liposomes loaded with doxorubicin with thin-lipid-film-hydration method on the cellular viability and osteogenesis of stem cell spheroids. Spheroid formation and morphology of the three-dimensional spheroid were noted with an inverted microscope. Quantitative cellular viability was assessed using a commercially available kit. Osteogenic potential was evaluated by applying alkaline phosphatase activity and anthraquinone dye of Alizarin Red S. Western blot analysis was performed using collagen I expression. Spheroids were formed in each silicon elastomer-based concave microwell on Day 1. Noticeable changes of the spheroid were seen with a higher concentration of doxorubicin, especially in the cationic liposome group at Days 5 and 7. We found that the application of doxorubicin for 5 days significantly reduced the cellular viability. A higher concentration of doxorubicin produced a significant decrease in alkaline phosphatase activity. Alizarin Red S staining showed that extracellular calcium deposits were evenly noted in each group. An increase of calcium deposits was noted on Day 14 when compared to Day 7. The morphology of the groups with higher concentrations of doxorubicin showed to be more dispersed. We noticed that doxorubicin-loaded cationic liposomes resulted in the highest uptake of the examined cell spheroids and that doxorubicin-loaded liposomes affected the osteogenic differentiation. The implication of this study is that the type of liposome should be selected based on the purpose of the application.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jihwan Son
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chae-Bin Na
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gawon Yi
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Heebeom Koo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|