1
|
Khosravi P, Shahidi F, Eskandari A, Khoramipour K. High-intensity interval training reduces Tau and beta-amyloid accumulation by improving lactate-dependent mitophagy in rats with type 2 diabetes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1430-1439. [PMID: 39386233 PMCID: PMC11459343 DOI: 10.22038/ijbms.2024.77038.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Objectives This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on lactate-induced mitophagy in the hippocampus of rats with type 2 diabetes. Materials and Methods 28 Wistar male rats were divided into four groups randomly: (i) control (Co), (ii) exercise (EX), (iii) type 2 diabetes (T2D), and (iv) type 2 diabetes + exercise (T2D + Ex). The rats in the T2D and T2D + Ex groups were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + Ex groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of lactate, as well as hippocampal levels of monocarboxylate transporter2 (MCT2), sirtuin1 (SIRT1), forkhead box protein O (FOXO3), light chain 3 (LC3), PTEN-induced kinase 1 (PINK1), parkin, beta-amyloid (Aβ), hyperphosphorylated tau protein (TAU), Malondialdehyde (MDA), and antioxidant enzymes were measured. One-way ANOVA and Tukey post-hoc tests were used to analyze the data. Results Serum and hippocampal levels of lactate as well as hippocampal levels of MCT2, SIRT1, FOXO3, LC3, PINK1, Parkin, and antioxidant enzymes were higher while hippocampal levels of Aβ, TAU, and MDA were lower in T2D+EX compared to T2D group (P-value<0.05). Conclusion HIIT could improve mitophagy through Lactate-SIRT1-FOXO3-PINK1/Parkin signaling in the hippocampus of rats with T2D reducing the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Pouria Khosravi
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Fereshte Shahidi
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Arezoo Eskandari
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| |
Collapse
|
2
|
Khoramipour K, Rezaei MH, Madadizadeh E, Hosseini MS, Soltani Z, Schierbauer J, Moser O. High Intensity Interval Training can Ameliorate Hypothalamic Appetite Regulation in Male Rats with Type 2 Diabetes: The Role of Leptin. Cell Mol Neurobiol 2023; 43:4295-4307. [PMID: 37828299 DOI: 10.1007/s10571-023-01421-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Disruption of leptin (LEP) signaling in the hypothalamus caused by type 2 diabetes (T2D) can impair appetite regulation. The aim of this study was to investigate whether the improvement in appetite regulation induced by high-intensity interval training (HIIT) in rats with T2D can be mediated by LEP signaling. In this study, 20 male Wister rats were randomly assigned to one of four groups: CO (non-type 2 diabetes control), T2D (type 2 diabetes), EX (non-type 2 diabetes exercise), and T2D + EX (type 2 diabetes + exercise).To induce T2D, a combination of a high-fat diet for 2 months and a single dose of streptozotocin (35 mg/kg) was administered. Rats in the EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of their maximum velocity (Vmax). Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum levels of insulin (INS) and LEP (LEPS) as well as hypothalamic expression of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), neuropeptide Y (NPY), agouti-related protein (AGRP), pro-opiomelanocortin cocaine (POMC), amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1) were assessed. ANOVA and Tukey post hoc tests were used to compare the results between the groups. The levels of LEPS and INS, as well as the levels of LEP-R, JAK-2, STAT-3, POMC, and CART in the hypothalamus were found to be higher in the T2D + EX group compared to the T2D group. On the other hand, the levels of HOMA-IR, NPY, AGRP, SOCS3, and FOXO1 were lower in the T2D + EX group compared to the T2D group (P < 0.0001). The findings of this study suggest that HIIT may improve appetite regulation in rats with T2D, and LEP signaling may play a crucial role in this improvement. Graphical abstract (leptin signaling in the hypothalamus), Leptin (LEP), Leptin receptor (LEP-R), Janus kinase 2 (JAK2), Signal transducer and activator of transcription 3 (STAT3), expressing Neuropeptide Y (NPY), Agouti-related protein (AGRP), anorexigenic neurons (expressing pro-opiomelanocortin cocaine (POMC), Amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1).
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mahdieh Sadat Hosseini
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuth, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Rezaei MH, Madadizadeh E, Aminaei M, Abbaspoor M, Schierbauer J, Moser O, Khoramipour K, Chamari K. Leptin Signaling Could Mediate Hippocampal Decumulation of Beta-Amyloid and Tau Induced by High-Intensity Interval Training in Rats with Type 2 Diabetes. Cell Mol Neurobiol 2023; 43:3465-3478. [PMID: 37378849 DOI: 10.1007/s10571-023-01357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023]
Abstract
Leptin (LEP) can cross the blood-brain barrier and facilitate cross-talk between the adipose tissue and central nerve system (CNS). This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on the LEP signaling in the hippocampus of rats with type 2 diabetes. 20 rats were randomly divided into four groups: (i) control (Con), (ii) type 2 diabetes (T2D), (iii) exercise (EX), and (iv) type 2 diabetes + exercise (T2D + EX). The rats in the T2D and T2D + EX were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), activated protein kinase (AMP-K), proxy zoster receptor α (PGC-1α), beta-secretase 1 (BACE1), Beta-Amyloid (Aβ), Phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), Glycogen Synthase Kinase 3 Beta (GSK3β), and hyperphosphorylated tau proteins (TAU) were measured. One-way ONOVA and Tukey post-hoc tests were used to analyze the data. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were increased while hippocampal levels of BACE1, GSK3B, TAU, and Aβ were decreased in T2D + EX compared with T2D group. Serum LEP and hippocampal levels of LEP, LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were decreased. Conversely hippocampal levels of BACE1, GSK3B, TAU, and Aβ were increased in T2D group compared with CON group. HIIT could improve LEP signaling in the hippocampus of rats with type 2 diabetes and decrease the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mohsen Aminaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Karim Chamari
- Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
4
|
Batiha GES, Al-Snafi AE, Thuwaini MM, Teibo JO, Shaheen HM, Akomolafe AP, Teibo TKA, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. Morus alba: a comprehensive phytochemical and pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02434-4. [PMID: 36877269 DOI: 10.1007/s00210-023-02434-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Morus alba is a fast-growing shrub or medium-sized tree with a straight, cylindrical trunk. Medicinally, whole plants, leaves, fruits, branches, and roots have been employed. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical components and pharmacologic and mechanism of action of the Morus alba. This was reviewed to assess important updates about Morus alba. The fruits of Morus alba have traditionally been used as an analgesic, anthelmintic, antibacterial, anti-rheumatic, diuretic, hypotensive, hypoglycemia, purgative, restorative, sedative tonic, and blood stimulant. Various plant parts were used as a cooling, sedating, diuretic, tonic, and astringent agent to treat nerve disorders. The plant contained tannins, steroids, phytosterols, sitosterol, glycosides, alkaloids, carbohydrates, proteins, and amino acids, as well as saponins, triterpenes, phenolics, flavonoids, benzofuran derivatives, anthocyanins, anthraquinones, glycosides, vitamins, and minerals. Previous pharmacological research identified antimicrobial, anti-inflammatory, immunological, analgesic, antipyretic, antioxidant, anti-cancer, antidiabetic, gastrointestinal, respiratory, cardiovascular, hypolipidemic, anti-obesity, dermatological, neurological, muscular, and protecting effects. This study looked at Morus alba's traditional uses, chemical components, and pharmacological effects.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt.
| | - Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq
| | - Mahdi M Thuwaini
- College of Medical and Healthy Techniques, Southern Technique University, Basra, Iraq
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão, Preto Medical School , University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Hazem M Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, University of São Paulo, Ribeirão PretoRibeirão Preto, São Paulo, Brazil
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine , Almustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Garbeeb
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine , Almustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.,AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
5
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
6
|
Sedeman M, Christowitz C, de Jager L, Engelbrecht AM. Obese mammary tumour-bearing mice are highly sensitive to doxorubicin-induced hepatotoxicity. BMC Cancer 2022; 22:1240. [PMID: 36451148 PMCID: PMC9710042 DOI: 10.1186/s12885-022-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Breast cancer is a major health burden for women, worldwide. Lifestyle-related risk factors, such as obesity and being overweight, have reached epidemic proportions and contributes to the development of breast cancer. Doxorubicin (DXR) is a chemotherapeutic drug commonly used to treat breast cancer, and although effective, may cause toxicity to other organs. The mechanisms and effects of DXR on hepatic tissue, and the contributing role of obesity, in breast cancer patients are poorly understood. The aim of this study was therefore to investigate the effects of DXR on hepatic tissue in an obese tumour-bearing mouse model. METHODS A diet-induced obesity (DIO) mouse model was established, where seventy-four three-week-old female C57BL6 mice were divided into two main groups, namely the high fat diet (containing 60% kcal fat) and standard diet (containing 10% kcal fat) groups. After eight weeks on their respective diets, the DIO phenotype was established, and the mice were further divided into tumour and non-tumour groups. Mice were subcutaneously inoculated with E0771 triple negative breast cancer cells in the fourth mammary gland and received three doses of 4 mg/kg DXR (cumulative dosage of 12 mg/kg) or vehicle treatments via intraperitoneal injection. The expression levels of markers involved in apoptosis and alanine aminotransferase (ALT) were compared by means of western blotting. To assess the pathology and morphology of hepatic tissue, haematoxylin and eosin staining was performed. The presence of fibrosis and lipid accumulation in hepatic tissues were assessed with Masson's trichrome and Oil Red O staining, respectively. RESULTS Microscopic examination of liver tissues showed significant changes in the high fat diet tumour-bearing mice treated with DXR, consisting of macrovesicular steatosis, hepatocyte ballooning and lobular inflammation, compared to the standard diet tumour-bearing mice treated with DXR and the control group (standard diet mice). These changes are the hallmarks of non-alcoholic fatty liver disease, associated with obesity. CONCLUSION The histopathological findings indicated that DXR caused significant hepatic parenchymal injury in the obese tumour-bearing mice. Hepatotoxicity is aggravated in obesity as an underlying co-morbidity. It has been shown that obesity is associated with poor clinical outcomes in patients receiving neo-adjuvant chemotherapy treatment regimens.
Collapse
Affiliation(s)
- Megan Sedeman
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| | - Claudia Christowitz
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| | - Louis de Jager
- grid.417371.70000 0004 0635 423XDivision of Anatomical Pathology, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, Cape Town, 8000 South Africa ,Anatomical Pathology, PathCare, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| |
Collapse
|
7
|
Tanisha, Venkategowda S, Majumdar M. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation. 3 Biotech 2022; 12:251. [PMID: 36060893 PMCID: PMC9428098 DOI: 10.1007/s13205-022-03309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
This study evaluated in vivo anti-diabetic and anti-obesity activity of a polyherbal formulation's methanolic extract containing an optimized ratio of edible seeds (Salvia hispanica, Chenopodium quinoa, Nelumbo nucifera). Diet-induced obese mice model (C57BL/6) was developed by feeding the mice a high-fat diet for 10 weeks resulting in hyperglycemia and obesity. Different doses (125, 250 and 500 mg/kg of body weight) of formulation were administered orally daily for 6 weeks. Fasting blood glucose and body weight were monitored throughout the study. At the end of the study, serum parameters were analyzed and histological examinations were performed. There was a significant reduction in fasting blood glucose levels and body weight in animal groups receiving polyherbal formulation. Lipid profile was improved as revealed by a reduction in serum triglycerides and total cholesterol. Histological study showed an improvement in liver, kidney and pancreatic sections of treated mice. High-performance thin layer chromatography was performed to identify the phytochemicals responsible for the above-mentioned bioactivities. The results revealed the presence of flavonoid (rutin) in seeds of N.nucifera and in the polyherbal formulation. For the first time, this study demonstrated the anti-diabetic and anti-obesity potential of the optimized formulation. The formulation can be used as a potential therapy for management of diabesity.
Collapse
Affiliation(s)
- Tanisha
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Sunil Venkategowda
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Mala Majumdar
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| |
Collapse
|
8
|
Orumiyehei A, Khoramipour K, Rezaei MH, Madadizadeh E, Meymandi MS, Mohammadi F, Chamanara M, Bashiri H, Suzuki K. High-Intensity Interval Training-Induced Hippocampal Molecular Changes Associated with Improvement in Anxiety-like Behavior but Not Cognitive Function in Rats with Type 2 Diabetes. Brain Sci 2022; 12:1280. [PMID: 36291214 PMCID: PMC9599079 DOI: 10.3390/brainsci12101280] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Exercise exerts many neuroprotective effects in diabetes-induced brain disorders. In this study, we investigated the effect of high-intensity interval training (HIIT) on brain molecular changes and cognitive and anxiety-like behaviors in rats with type 2 diabetes. (2) Methods: Twenty-eight adult male rats were divided into four groups (n = 7): control (C), exercise + control (C+EX), diabetes (DM), and diabetes + exercise (DM+EX). Diabetes was induced using a two-month high-fat diet and a single dose of streptozotocin (35 mg/kg) in the DM and DM+EX groups. After, the C+EX and DM+EX groups performed HIIT for eight weeks (five sessions per week, running at 80-100% of VMax, 4-10 intervals) on a motorized treadmill. Then, the elevated plus maze (EPM) and open field test (OFT) were performed to evaluate anxiety-like behaviors. The Morris water maze (MWM) and shuttle box were used to assess cognitive function. The hippocampal levels of beta-amyloid and tau protein were also assessed using Western blot. (3) Results: The hippocampal levels of beta-amyloid and tau protein were increased in the DM group, but HIIT restored these changes. While diabetes led to a significant decrease in open arm time percentage (%OAT) and open arm enters percentage (%OAE) in the EPM, indicating anxiety-like behavior, HIIT restored them. In the OFT, grooming was decreased in diabetic rats, which was restored by HIIT. No significant difference between groups was seen in the latency time in the shuttle box or for learning and memory in the MWM. (4) Conclusions: HIIT-induced hippocampal molecular changes were associated with anxiety-like behavior improvement but not cognitive function in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Amin Orumiyehei
- Toxicology Research Center, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran
| | - Manzumeh Shamsi Meymandi
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | | | - Mohsen Chamanara
- Toxicology Research Center, Aja University of Medical Sciences, Tehran 1411718541, Iran
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Institute of Sports Nutrition, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
9
|
Pawar HD, Mahajan UB, Nakhate KT, Agrawal YO, Patil CR, Meeran MFN, Sharma C, Ojha S, Goyal SN. Curcumin Protects Diabetic Mice against Isoproterenol-Induced Myocardial Infarction by Modulating CB2 Cannabinoid Receptors. Life (Basel) 2022; 12:624. [PMID: 35629293 PMCID: PMC9143027 DOI: 10.3390/life12050624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular docking revealed curcumin as a potent CB2 cannabinoid receptor (CB2R) agonist. Since CB2R is involved in cardioprotective functions, we explored its role in ameliorative actions of curcumin against myocardial damage triggered by isoproterenol in diabetic animals. Mice were kept on a high-fat diet (HFD) throughout the experiment (30 days). Following 7 days of HFD feeding, streptozotocin was administered (150 mg/kg, intraperitoneal) to induce diabetes. From day 11 to 30, diabetic mice received either curcumin (100 or 200 mg/kg/day, oral), CB2R antagonist AM630 (1 mg/kg/day, intraperitoneal) or both, with concurrent isoproterenol (150 mg/kg, subcutaneous) administration on day 28 and 29. Diabetic mice with myocardial infarction showed an altered hemodynamic pattern and lipid profile, reduced injury markers, antioxidants with increased lipid peroxidation in the myocardium, and elevated glucose and liver enzymes in the blood. Moreover, an increased pro-inflammatory markers, histological severity, myonecrosis, and edema were observed. Curcumin compensated for hemodynamic fluctuations, restored biochemical markers, preserved antioxidant capacity, decreased cytokines levels, and restored cardiac functionality. However, the AM630 pre-treatment attenuated the effects of curcumin. The data suggest the involvement of CB2R in the actions of curcumin such as in the prevention of myocardial stress and in the improvement of the normal status of the myocardial membrane associated with diabetes.
Collapse
Affiliation(s)
- Harshal D. Pawar
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India; (H.D.P.); (U.B.M.); (C.R.P.)
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India; (H.D.P.); (U.B.M.); (C.R.P.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, India; (K.T.N.); (Y.O.A.)
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, India; (K.T.N.); (Y.O.A.)
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India; (H.D.P.); (U.B.M.); (C.R.P.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (S.O.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (S.O.)
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, India; (K.T.N.); (Y.O.A.)
| |
Collapse
|
10
|
Shin JE, Jeon SH, Lee SJ, Choung SY. The Administration of Panax Ginseng Berry Extract Attenuates High-Fat-Diet-Induced Sarcopenic Obesity in C57BL/6 Mice. Nutrients 2022; 14:nu14091747. [PMID: 35565712 PMCID: PMC9099595 DOI: 10.3390/nu14091747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcopenia and obesity are serious health problems that are highly related to several metabolic diseases. Sarcopenic obesity, a combined state of sarcopenia and obesity, results in higher risks of metabolic diseases and even mortality than sarcopenia or obesity alone. Therefore, the development of therapeutic agents for sarcopenic obesity is crucial. C57BL/6 mice were fed with a high-fat diet (HFD) for 9 weeks. Then, mice were administered with Panax ginseng berry extract (GBE) for an additional 4 weeks, with continuous HFD intake. GBE significantly decreased the food efficiency ratio, serum lipid and insulin levels, adipose tissue weights, and adipocyte size. It significantly increased the grip strength, muscle masses, and myofiber cross-sectional area. It deactivated the protein kinase C (PKC) theta and zeta, resulting in activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is known to regulate muscle synthesis and degradation. Furthermore, it inhibited the production of inflammatory cytokines in the muscle tissue. GBE attenuated both obesity and sarcopenia. Thus, GBE is a potential agent to prevent or treat sarcopenic obesity.
Collapse
Affiliation(s)
- Ji-Eun Shin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - So-Hyun Jeon
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | | | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9198; Fax: +82-2-961-0372
| |
Collapse
|
11
|
Ma G, Chai X, Hou G, Zhao F, Meng Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem 2022; 372:131335. [PMID: 34818743 DOI: 10.1016/j.foodchem.2021.131335] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022]
Abstract
Mulberry leaves (MLs) have been used traditionally to raise silkworms and as herbs and herbal drinks. In vitro and in vivo studies as well as some clinical trials provide some evidence of health benefits, mostly for ML extracts. ML extracts showed antioxidant, hypoglycemic, anticholesterol (affecting lipid metabolism), antiobesity, anti-inflammatory, anticancer activities, and so on. These might be linked to strong antioxidant activities, inhibition of α-glucosidase and α-amylase, reduction of foam cell formation, inhibition of fat formation, decrease of NF-κB activity, and the promotion or induction of apoptosis. Phenolic constituents, especially flavonoids, phenolic acids and alkaloids, are likely to contribute to the reported effects. The phytochemistry and pharmacology of MLs confer the traditional and current uses as medicine, food, fodder, and cosmetics. This paper reviews the economic value, chemical composition and pharmacology of MLs to provide a reference for the development and utilization of MLs.
Collapse
Affiliation(s)
- Guangqun Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
12
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:microorganisms10020405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
13
|
Polysaccharides Obtained from Cordyceps militaris Alleviate Hyperglycemia by Regulating Gut Microbiota in Mice Fed a High-Fat/Sucrose Diet. Foods 2021; 10:foods10081870. [PMID: 34441649 PMCID: PMC8391476 DOI: 10.3390/foods10081870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023] Open
Abstract
Polysaccharides isolated from fungus Cordyceps militaris display multi-biofunctions, such as immunostimulation, down-regulation of hyperlipidemia, and anti-cancer function. The occurrence of obesity and metabolic syndrome is related to the imbalance of gut microbiota. In this study, the effects of C. militaris and its fractions on modifying metabolic syndrome in mice were evaluated. Mice were fed a high-fat/high-sucrose diet (HFSD) for 14 weeks to induce body weight increase and hyperlipidemia symptoms in mice, and then the mice were simultaneously given a HFSD and C. militaris samples for a further 8 weeks. The results indicated that the fruit body, polysaccharides, and cordycepin obtained from C. militaris had different efficacies on regulating metabolic syndrome and gut microbiota in HFSD-treated mice. Polysaccharides derived from C. militaris decreased the levels of blood sugar and serum lipids in mice fed HFSD. In addition, C. militaris-polysaccharide treatment obviously improved intestinal dysbiosis through promoting the population of next generation probiotic Akkermansia muciniphila in the gut of mice fed HFSD. In conclusion, polysaccharides derived from C. militaris have the potential to act as dietary supplements and health food products for modifying the gut microbiota to improve the metabolic syndrome.
Collapse
|
14
|
Al-Obaidi JR, Jambari NN, Ahmad-Kamil EI. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J Fungi (Basel) 2021; 7:jof7070503. [PMID: 34202552 PMCID: PMC8304235 DOI: 10.3390/jof7070503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Fungi, especially edible mushrooms, are considered as high-quality food with nutritive and functional values. They are of considerable interest and have been used in the synthesis of nutraceutical supplements due to their medicinal properties and economic significance. Specific fungal groups, including predominantly filamentous endophytic fungi from Ascomycete phylum and several Basidiomycetes, produce secondary metabolites (SMs) with bioactive properties that are involved in the antimicrobial and antioxidant activities. These beneficial fungi, while high in protein and important fat contents, are also a great source of several minerals and vitamins, in particular B vitamins that play important roles in carbohydrate and fat metabolism and the maintenance of the nervous system. This review article will summarize and discuss the abilities of fungi to produce antioxidant, anticancer, antiobesity, and antidiabetic molecules while also reviewing the evidence from the last decade on the importance of research in fungi related products with direct and indirect impact on human health.
Collapse
Affiliation(s)
- Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
- Correspondence: (J.R.A.-O.); (N.N.J.)
| | - Nuzul Noorahya Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (J.R.A.-O.); (N.N.J.)
| | - E. I. Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, Kuala Lumpur 50480, Malaysia;
| |
Collapse
|
15
|
Awaad A, Abdel Aziz HO. Iron biodistribution profile changes in the rat spleen after administration of high-fat diet or iron supplementation and the role of curcumin. J Mol Histol 2021; 52:751-766. [PMID: 34050395 DOI: 10.1007/s10735-021-09986-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Curcumin as active metal chelating and antioxidant agent has a potential role in metal reduction and free radicals' neutralization in tissues. Of note, long-term administration of high fat diet (HFD) is considered as a main factor of blood serum iron deficiency. This study aimed to investigate the biodistribution profiles of iron in the spleen after long-term administration of HFD along with iron supplementation. Furthermore, the ameliorative role of curcumin to reduce iron accumulation level and improve the histological abnormalities produced by iron in spleen will be evaluated in the rats. Treated albino rats of this experiment were divided into six groups. Group I was a control group where group II was treated with HFD. Group III and group IV were treated with combination of HFD and curcumin or HFD and iron supplement respectively. Additionally, group V and group VI were treated with combination of HFD, iron supplement and curcumin or curcumin only respectively. Mainly histological analysis was used to investigate iron biodistribution and induced abnormalities in spleen under light microscope. The histochemical specific staining of iron in the spleen showed different biodistribution profiles of iron in the spleen. Administration of the HFD or HFD and iron supplementation increased the iron accumulation in the spleen. Where, curcumin administration with HFD (Group III) or with HFD and iron supplementation (Group V) significantly reduced the iron levels in the spleen. The splenic tissue inflammation, cellular apoptosis and fibrosis produced by higher iron accumulation was ameliorated after administration of curcumin supplementation as shown in the animals treated with HFD/curcumin (Group III) or HFD/iron supplement/curcumin (Group V). This study recommended that, it is preferable to use iron supplementation along with curcumin supplement for less than 4 months to avoid additional iron accumulation in the healthy organs.
Collapse
Affiliation(s)
- Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | | |
Collapse
|
16
|
Antioxidant Activity of Sprouts Extracts Is Correlated with Their Anti-Obesity and Anti-Inflammatory Effects in High-Fat Diet-Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8367802. [PMID: 33643424 PMCID: PMC7902152 DOI: 10.1155/2021/8367802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023]
Abstract
Obesity is closely associated with oxidative stress and chronic inflammation leading to related metabolic diseases. Some natural extracts or polyphenols reportedly possess anti-obesity and anti-inflammatory effects as well as antioxidant activity. In this study, we assessed the correlations between the antioxidant, anti-obesity, and anti-inflammatory activities of plant extracts with potent antioxidant activity in diet-induced obese mice. Sprouts of Cedrela sinensis (CS) and Oenothera biennis L. (OB) were selected as the most potent antioxidant plant based on analysis of in vitro antioxidant activity of the extracts of ten different edible plants. C57BL/6 mice were fed with a high-fat diet (HFD) and orally treated with 50% ethanol extract of CS or OB at 50 or 100 mg/kg body weight 5 days a week for 14 weeks. Body weight gain, weight of adipose tissue, adipocyte size, and levels of lipid metabolism, inflammation, and oxidative stress markers were investigated. The CS or OB extract reduced body weight gain, visceral adipose tissue weight, adipocyte size, and plasma leptin levels, and expressions of adipogenic genes (PPARγ and fatty acid synthase) in the adipose tissue and liver of HFD-fed mice. Both extracts also reduced mRNA levels of pro-inflammatory cytokines (IL-6 and TNF-α) and oxidative stress-related genes (heme oxygenase- (HO-) 1 and p40phox). Body weight gain of mice was significantly correlated with visceral adipose tissue weight and adipocyte size. Body weight gain and adipocyte size were significantly correlated with plasma total cholesterol and 8-epi PGF2α levels, mRNA levels of leptin, HO-1, p40phox, and CD-11 in the adipose tissue, and mRNA levels of TNF-α in the adipose tissue and liver. These results suggest that the CS and OB extracts with potent antioxidant activity may inhibit fat deposition in adipose tissue and subsequent inflammation.
Collapse
|
17
|
Chen WY, Lin FH. Oxidized Hyaluronic Acid Hydrogels as a Carrier for Constant-Release Clenbuterol Against High-Fat Diet-Induced Obesity in Mice. Front Endocrinol (Lausanne) 2021; 12:572690. [PMID: 33776904 PMCID: PMC7996091 DOI: 10.3389/fendo.2021.572690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022] Open
Abstract
The global obesity population is increasing year-by-year, and the related cost is sharply increasing annually. There are several methods available to combat obesity; however, there is a lack of a single tool that is both safe and efficacious. The use of Clenbuterol in bodybuilding and by professional athletes is controversial owing to its side effects, including hepatotoxicity. This study administered Clenbuterol at a much lower dose than the established safety level, and rather than through oral administration, the treatments were delivered through controlled-release intra-adipose injection. The different dosing and mode of administration will lower the risk of side effects, increase the safety profile, and could facilitate use in the anti-obesity market. A thermo-sensitive hydrogel was used as the carrier uploaded with Clenbuterol to achieve controlled-release. In the in vitro study, the developed new formulae were not cytotoxic to 3T3-L1 cells and could inhibit lipogenesis effectively. In the animal study, the mice were fed a high-fat diet and treated with Clenbuterol by oral administration, or injected with Clenbuterol-modified hyaluronate hydrogel (HAC) regularly. Both groups showed reduction in whole-body, visceral, and gonadal fat contents and body weight. The abdominal fat was analyzed using MRI imaging in adipose mode and water mode. The abdominal fat ratio in the mice treated with normal diet and those given intra-adipose injections with HAC had the lowest value among the test groups. The mice treated with high-fat diet (HFD) showed the highest value of 53.78%. The chronic toxicity in-vivo test proved that controlled-release injections of 2-10 µg Clenbuterol daily were safe, as demonstrated in the blood elements and serological analyses. This study developed a new and promising method for anti-obesity treatment, using a monthly intra-adipose controlled-release injection of HAC. The developed new formulae of Clenbuterol not only effectively decreased body weight and body fat content but also inhibited lipogenesis on the harvested visceral tissue and reduced adipose tissue around the gonadal fat area. The side effects induced by traditional oral administration of Clenbuterol were not observed in this research; this has excellent potential to be a useful tool for future obesity treatment without safety concerns.
Collapse
Affiliation(s)
- Wei-Yao Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- *Correspondence: Feng-Huei Lin,
| |
Collapse
|
18
|
Lee MR, Kim JE, Park JJ, Choi JY, Song BR, Choi YW, Kim DS, Kim KM, Song HK, Hwang DY. Protective role of fermented mulberry leave extract in LPS‑induced inflammation and autophagy of RAW264.7 macrophage cells. Mol Med Rep 2020; 22:4685-4695. [PMID: 33174019 PMCID: PMC7646855 DOI: 10.3892/mmr.2020.11563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mulberry leaves have antioxidant activity and anti‑inflammatory effects in several types of cells. However, the efficacy of mulberry leaves fermented with Cordyceps militaris remains unknown. Therefore, the present study aimed to investigate whether the ethanol extracts of mulberry leaves fermented with C. militaris (EMfC) can prevent lipopolysaccharide (LPS)‑induced inflammation and autophagy in macrophages. To achieve this, RAW264.7 cells pretreated with three different dose of EMfCs were subsequently stimulated with LPS, and examined for alterations in the regulatory factors of inflammatory responses and key parameters of the autophagy signaling pathway. EMfC treatment inhibited the generation of reactive oxidative species; however, significant activity was observed for 2,2‑diphenyl‑1‑picrylhydrazyl (DPPH) radical scavenging (IC50=579.6703 mg/ml). Most regulatory factors in inflammatory responses were significantly inhibited following treatment with EMfC, without any significant cellular toxicity. EMfC‑treated groups exhibited marked suppression of nitrogen oxide (NO) levels, mRNA expression levels of iNOS/COX‑2, levels of all inflammatory cytokines (TNF‑α, IL‑1β and IL‑6) and phosphorylation of MAPK members, as well as recovery of cell cycle progression. Furthermore, similar effects were observed in the LPS‑induced autophagy signaling pathway of RAW264.7 cells. The expression levels of microtubule‑associated protein 1A/1B‑light chain 3 (LC3) and Beclin exhibited a dose‑dependent decrease in the EMfC+LPS‑treated groups compared with in the Vehicle+LPS‑treated group, whereas the phosphorylation of PI3K and mTOR were enhanced in a dose‑dependent manner in the same groups. Overall, the results of the present study provide evidence that exposure to EMfC protects against LPS‑induced inflammation and autophagy in RAW264.7 cells. These results indicated that EMfC is a potential candidate for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Life Sciences, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Seob Kim
- Department of Food Science and Technology, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung Mi Kim
- Life Science Research Institute, Novarex Co., Ltd., Chungju 28126, Republic of Korea
| | - Hyun Keun Song
- Central Research Institute, Kinesciences Co., Seoul 02850, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
19
|
Lee MR, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Choi YW, Kim KM, Hong JT, Hwang DY. Fermented mulberry (Morus alba) leaves suppress high fat diet-induced hepatic steatosis through amelioration of the inflammatory response and autophagy pathway. BMC Complement Med Ther 2020; 20:283. [PMID: 32948162 PMCID: PMC7501671 DOI: 10.1186/s12906-020-03076-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) is reported to exert anti-obesity activity, although their molecular mechanism during hepatic steatosis has not verified. METHODS To investigate the role of inflammation and autophagy during the anti-hepatic steatosis effects of EMfC, we measured alterations in the key parameters for inflammatory response and autophagy pathway in liver tissues of the high fat diet (HFD) treated C57BL/6N mice after exposure to EMfC for 12 weeks. RESULTS Significant anti-hepatic steatosis effects, including decreased number of lipid droplets and expression of Klf2 mRNA, were detected in the liver of the HFD + EMfC treated group. The levels of mast cell infiltration, expression of two inflammatory mediators (iNOS and COX-2), and the MAPK signaling pathway were remarkably decreased in the liver of HFD + EMfC treated group as compared to the HFD + Vehicle treated group. Furthermore, a similar inhibitory effect was measured for the expression levels of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α and NF-κB. The expression level of members in the AKT/mTOR signaling pathway (a central regulator in autophagy) was recovered after treatment with EMfC, and autophagy-related proteins (Beclin and LC3-II) were remarkably decreased in the HFD + EMfC treated group compared to the HFD + Vehicle treated group. Moreover, the HFD + EMfC treated group showed decreased transcript levels of autophagy-regulated genes including Atg4b, Atg5, Atg7 and Atg12. CONCLUSIONS Taken together, findings of the present study provide novel evidences that the anti-hepatic steatosis of EMfC is tightly linked to the regulation of the inflammatory response and autophagy pathway in the liver tissue of HFD-induced obesity mice.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Su Ji Bae
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institue, Pusan National University, Miryang, 50463, South Korea
| | - Kyung Mi Kim
- Life Science Research Institute, Novarex Co., Ltd, Chungju, 28126, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, 28644, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea.
| |
Collapse
|