1
|
Yang Y, Gong Z, Yang J, Cai Y, Hong S, Mao W, Guo Z, Qiu M, Fan Z, Cui B. Exploring shared mechanisms between ulcerative colitis and psoriasis and predicting therapeutic natural compounds through bioinformatics and molecular docking. Heliyon 2024; 10:e37624. [PMID: 39309918 PMCID: PMC11416260 DOI: 10.1016/j.heliyon.2024.e37624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Previous studies have suggested a potential correlation between psoriasis (PS) and ulcerative colitis (UC). However, studies exploring the shared mechanisms of both diseases remain limited. Current treatments primarily involve using immunosuppressive drugs, which can lead to potential side effects and drug resistance. Traditional Chinese medicine has demonstrated favorable efficacy in treating UC and PS with fewer side effects. This study aims to elucidate the shared biological mechanisms underlying UC and PS and to predict natural compounds effective for treating both disorders. Method We collected and validated differentially expressed genes associated with UC and PS from the Gene Expression Omnibus database. A protein-protein interaction network was constructed using the STRING database, aiding in identifying core targets. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were utilized to analyze the functions and genomic enrichment of the identified core targets. The CIBERSORT method was employed to assess the correlation of core targets with immune cells. Compounds with potential therapeutic values were selected from the Coremine and TCMSP databases, and their therapeutic efficacy was predicted via molecular docking. Results In UC and PS, 20 common core targets were identified, with matrix metalloproteinase 9 (MMP9), matrix metalloproteinase 1 (MMP1), cluster of differentiation 274 (CD274), C-X-C motif chemokine ligand 10 (CXCL10), and topoisomerase II alpha (TOP2A) emerging as the most relevant targets shared between both conditions. Elevated levels of macrophages and dendritic cells were observed in UC and PS, with CXCL10 exhibiting the closest association with macrophages. UC and PS shared common signaling pathways, including IL-17, TNF, and chemokine signaling pathways, among others. Molecular docking revealed that quercetin, baicalen, irisolidone, rutaecarpine, epigallocatechin-3-gallate, and others held potential as natural compounds for treating both disorders. Conclusion MMP9, MMP1, and CXCL10, central mediators in the inflammatory pathways of UC and PS, establish a shared mechanism by triggering cytokine and chemokine activation, leading to tissue damage and positioning them as promising therapeutic targets for both conditions. Compounds such as quercetin, luteolin, irisolidone, rutaecarpine, and so on may be key drugs for treating both conditions. These findings suggest the potential advancement of therapeutic strategies and the enhancement of patient care by exploring shared mechanisms and predicting promising natural compounds for treating UC and PS.
Collapse
Affiliation(s)
- Yixuan Yang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhuozhi Gong
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Jiao Yang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Cai
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengwei Hong
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjun Mao
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijian Guo
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Mengting Qiu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhu Fan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
2
|
Abdelrazig OA, Fadilah F, Erlina L, Hegar B. UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. ANKARA UNIVERSITESI ECZACILIK FAKULTESI DERGISI 2024; 48:11-11. [DOI: 10.33483/jfpau.1439430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Objective: This study utilizes integrated bioinformatics to investigate Differentially Expressed Genes (DEGs) and pathways related to ulcerative colitis (UC).
Material and Method: Differentially Expressed Genes were identified from UC patients' colonic mucosal samples and controls using GSE13367 and GSE134025 datasets. Differentially Expressed Genes selection utilized GEO2R and Venn diagrams, followed by functional annotation, pathway analysis, PPI determination via the STRING database, and GO/KEGG enrichment analysis using Metascape.
Result and Discussion: Analysis unveiled 197 DEGs, with 76 up-regulated and 121 down-regulated genes. Up-regulated genes were enriched in humoral immune response, peptidoglycan binding, and NADPH oxidase complex, while down-regulated genes were linked to inorganic anion transport, transmitter-gated ion channel activity, and integral plasma membrane components. In the PPI network, up-regulated DEGs formed a dense network (75 nodes, 190 edges), indicating significant interactions, whereas down-regulated DEGs formed a less dense network (114 nodes, 63 edges). Five hub genes (CXCR4, CXCL13, CXCL1, MMP3) were identified among the 197 DEGs. These findings provide new insights into UC's causes and offer promise for more effective therapeutic approaches.
Collapse
|
3
|
Li H, Bo S, Guo Y, Wang T, Pan Y. Identification of hub genes and key modules in laryngeal squamous cell carcinoma. Transl Cancer Res 2024; 13:3771-3782. [PMID: 39145051 PMCID: PMC11319952 DOI: 10.21037/tcr-24-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is the prominent cancer in head and neck, which greatly affects life quality of patients. The pathogenesis of LSCC is not clear. Presently, the LSCC treatments include chemotherapy, surgery and radiotherapy; however, these methods have poor efficacy in patients with recurrent and persistent cancer. Therefore, the study identified the hub genes accompanied with LSCC, which may be a potential therapeutic target in the future. Methods We extracted whole transcriptome high-throughput sequencing (HTS) LSCC data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and calculate differentially expressed genes (DEGs) between LSCC and normal samples using statistical software RStudio. Through weighted gene co-expression network analysis (WGCNA), enrichment examination of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) functions, and examination of protein-protein interaction (PPI) network, we obtained network hub genes and validated the hub genes prognostic value and expression levels of protein. Results Through analysis of differential gene expression, from the GEO and TCGA databases 2,139 and 2,774 DEGs were obtained, respectively, 13 and 15 modules were screened from TCGA-LSCC and GSE127165 datasets by WGCNA, respectively. The most significant positive and negative correlation modules in the WGCNA and DEG lists were overlapped, and overall 36 co-expressed overlapping genes were retrieved. Through enrichment analysis of GO and KEGG, it was found that the gene functions were highly concentrated in cell junction assembly, basement membrane, extracellular matrix (ECM) structural constituent etc., and the pathways were mainly concentrated in ECM receptor interaction, focal adhesion, small cell lung cancer, and toxoplasmosis. Through analysis of PPI network analysis, 10 network hub genes (SNAI2, ITGA6, LAMB3, LAMC2, CAV1, COL7A1, GJA1, EHF, OAT, and GPT) were obtained. Finally, survival analysis and protein expression validation of these genes confirmed that low OAT expression and high CAV1 expression remarkably influenced the survival of patient's prognosis with LSCC. Conclusions We recognized the hub genes and key modules nearly associated to LSCC and these genes were validated by survival analysis and the database of Human Protein Atlas (HPA), which is of high importance for unveiling the pathogenesis of LSCC and probing for new precise biological marker and potential therapeutic targets.
Collapse
Affiliation(s)
- Hongyue Li
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Beijing, China
| | - Shaojun Bo
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Beijing, China
| | - Yutian Guo
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Beijing, China
| | - Tiantian Wang
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Beijing, China
| | - Yangwang Pan
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Beijing, China
| |
Collapse
|
4
|
Meng G, Duan H, Jia J, Liu B, Ma Y, Cai X. Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells. Anim Biosci 2024; 37:509-521. [PMID: 38271979 PMCID: PMC10915198 DOI: 10.5713/ab.23.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/26/2023] [Accepted: 11/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). METHODS The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. RESULTS Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. CONCLUSION Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.
Collapse
Affiliation(s)
- Guizhi Meng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021,
China
| | - Hongjuan Duan
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021,
China
| | - Jingying Jia
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021,
China
| | - Baobao Liu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021,
China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021,
China
| | - Xiaoyan Cai
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021,
China
| |
Collapse
|
5
|
Aishwarya S, Gunasekaran K. Differential Gene Expression Profiles Involved in the Inflammations Due to COVID-19 and Inflammatory Bowel Diseases and the Investigation of Predictive Biomarkers. Biochem Genet 2024; 62:311-332. [PMID: 37335372 DOI: 10.1007/s10528-023-10414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Gastrointestinal manifestations in COVID-19 were attributed to 74-86% of the hospitalised patients due to severe or prolonged pathogenesis. Though it is a respiratory disease, the impact it elicits on the gastrointestinal tract and brain are intense. Inflammatory bowel disease including Crohn's disease and ulcerative colitis are idiopathic inflammatory disorders of the gastrointestinal tract. The intrinsic mechanisms involved in gut inflammations due to a respiratory viral disease can be deciphered when the gene expression profiles of COVID-19 and IBD are compared. The current study utilises an integrated bioinformatics approach to unravel them. The publicly available gene expression profiles of colon transcriptomes infected with COVID-19, Crohn's disease and Ulcerative colitis were retrieved, integrated and analysed for the identification of differentially expressed genes. The inter-relational analysis along with gene annotation and pathway enrichment detailed the functional and metabolic pathways of the genes during normal and diseased conditions. The protein-protein interactions deduced from the STRING database and the identified hub genes predicted potential biomarker candidates for COVID-19, Crohn's disease and ulcerative colitis. The inflammatory response pathways were upregulated and enrichment of chemokine signalling, altered lipid metabolism, coagulation and complement cascades were seen in all three conditions along with impaired transport mechanisms. CXCL11, MMP10, and CFB are predicted to be overexpressed biomarkers, whilst GUCA2A, SLC13A2, CEACAM, and IGSF9 as downregulated novel biomarker candidates for colon inflammations. The three miRNAs hsa-miR-16-5p, hsa-miR-21-5p, and hsa-miR-27b-5p exhibited significant interactions with the upregulated hub genes and four long non-coding RNAs NEAT1, KCNQ1OT1, and LINC00852 capable of regulating miRNA were also predicted. This study offers significant information on the underlying molecular mechanisms of inflammatory bowel disease with identification of potential biomarkers.
Collapse
Affiliation(s)
- S Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India.
- CAS in Crystallography and Biophysics, University of Madras, Chennai, India.
| | - K Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
6
|
Lee Y, Kim SH, Jeong H, Kim KH, Jeon D, Cho Y, Lee D, Nam KT. Role of Nox4 in Mitigating Inflammation and Fibrosis in Dextran Sulfate Sodium-Induced Colitis. Cell Mol Gastroenterol Hepatol 2023; 16:411-429. [PMID: 37207801 PMCID: PMC10372905 DOI: 10.1016/j.jcmgh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Fibrosis development in ulcerative colitis is associated directly with the severity of mucosal inflammation, which increases the risk of colorectal cancer. The transforming growth factor-β (TGF-β) signaling pathway is an important source of tissue fibrogenesis, which is stimulated directly by reactive oxygen species produced from nicotinamide adenine dinucleotide phosphate oxidases (NOX). Among members of the NOX family, NOX4 expression is up-regulated in patients with fibrostenotic Crohn's disease (CD) and in dextran sulfate sodium (DSS)-induced murine colitis. The aim of this study was to determine whether NOX4 plays a role in fibrogenesis during inflammation in the colon using a mouse model. METHODS Acute and recovery models of colonic inflammation were performed by DSS administration to newly generated Nox4-/- mice. Pathologic analysis of colon tissues was performed, including detection of immune cells, proliferation, and fibrotic and inflammatory markers. RNA sequencing was performed to detect differentially expressed genes between Nox4-/- and wild-type mice in both the untreated and DSS-treated conditions, followed by functional enrichment analysis to explore the molecular mechanisms contributing to pathologic differences during DSS-induced colitis and after recovery. RESULTS Nox4-/- mice showed increased endogenous TGF-β signaling in the colon, increased reactive oxygen species levels, intensive inflammation, and an increased fibrotic region after DSS treatment compared with wild-type mice. Bulk RNA sequencing confirmed involvement of canonical TGF-β signaling in fibrogenesis of the DSS-induced colitis model. Up-regulation of TGF-β signaling affects collagen activation and T-cell lineage commitment, increasing the susceptibility for inflammation. CONCLUSIONS Nox4 protects against injury and plays a crucial role in fibrogenesis in DSS-induced colitis through canonical TGF-β signaling regulation, highlighting a new treatment target.
Collapse
Affiliation(s)
- Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hee Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Bioinformatics Analysis of Immune Cell Infiltration and Diagnostic Biomarkers between Ankylosing Spondylitis and Inflammatory Bowel Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9065561. [PMID: 36643579 PMCID: PMC9836798 DOI: 10.1155/2023/9065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/09/2022] [Accepted: 11/26/2022] [Indexed: 01/07/2023]
Abstract
Background Ankylosing spondylitis (AS) and inflammatory bowel disease (IBD) are both autoimmune diseases, and they often occur together in clinical practice, but the pathogenesis is unclear. This study is aimed at identifying the hub genes and explore the related immune molecular mechanisms between AS and IBD by bioinformatics analysis. Methods From the public Gene Expression Omnibus (GEO) database, the AS and IBD datasets (GSE73754, GSE59071, GSE25101, and GSE36807) were obtained. The immune cell infiltration in the peripheral blood tissues of GSE73754 and GSE59071 was assessed using the CIBERSORT algorithm. Then, we used the Weighted Gene Coexpression Network Analysis (WGCNA) to identify the Differentially Expressed Genes (DEGs) related to AS and IBD. Then, the immune genes from the ImmPort database intersected with the DEGs to obtain hub genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the functional correlation of hub genes. Then, hub genes were verified in GSE25101 and GSE36807. The clusterProfiler software and Gene Set Enrichment Analysis (GSEA) were used to conduct functional enrichment and pathway enrichment studies. Finally, the diagnostic efficacy was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The analysis of immune characteristics showed that both AS and IBD were related to immunity, and neutrophils were positively correlated in both diseases. Nine coexpressed genes, including FCGRT, S100A11, IFNGR1, NFKBIZ, JAK2, LYN, PLAUR, ADM, and IL1RN, were linked to immune cells. The GO and KEGG analyses results showed that enrichment analysis was mainly related to cell transport and migration. Finally, the ROC curve was verified with the validation set, and it was found that PLAUR has clinical diagnostic significance and the most excellent specificity and sensitivity, respectively. Conclusions PLAUR (uPAR) is a promising biomarker and will be an underlying genetic biomarker for diagnosing AS comorbid IBD. Inflammation and immunological modulation mediated by neutrophil infiltration were important in the development of AS and IBD and may be diagnostic and therapeutic targets.
Collapse
|
8
|
Wang XJ, Li XY, Guo XC, Liu L, Jin YY, Lu YQ, Cao YJN, Long JY, Wu HG, Zhang D, Yang G, Hong J, Yang YT, Ma XP. LncRNA-miRNA-mRNA Network Analysis Reveals the Potential Biomarkers in Crohn’s Disease Rats Treated with Herb-Partitioned Moxibustion. J Inflamm Res 2022; 15:1699-1716. [PMID: 35282268 PMCID: PMC8906857 DOI: 10.2147/jir.s351672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Long noncoding RNA (lncRNA) is receiving growing attention in Crohn’s disease (CD). However, the mechanism by which herb-partitioned moxibustion (HPM) regulates the expression and functions of lncRNAs in CD rats is still unclear. The aim of our study is to identify lncRNA-miRNA-mRNA network potential biological functions in CD. Methods RNA sequencing and microRNA (miRNA) sequencing were carried out to analyze lncRNA, miRNA and mRNA expression profiles among the CD rats, normal control rats, and CD rats after HPM treatment and constructed the potential related lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein–protein interaction (PPI) analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to explore potentially important genes in ceRNA networks. Results A total of 189 lncRNAs, 32 miRNAs and 463 mRNAs were determined as differentially expressed (DE) genes in CD rats compared to normal control rats, and 161 lncRNAs, 12 miRNAs and 130 mRNAs were identified as remarkably DE genes in CD rats after HPM treatment compared to CD rats. GO analysis indicated that the target genes were most enriched in cAMP and in KEGG pathway analysis the main pathways included adipocytokine, PPAR, AMPK, FoxO and PI3K-Akt signaling pathway. Finally, qRT-PCR results confirmed that lncRNA LOC102550026 sponged miRNA-34c-5p to regulate the intestinal immune inflammatory response by targeting Pck1. Conclusion By constructing a ceRNA network with lncRNA-miRNA-mRNA, PCR verification, and KEGG analysis, we revealed that LOC102550026/miRNA-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways might regulate the intestinal immune-inflammatory response, and HPM may regulate the lncRNA LOC102550026/miR-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways, thus improving intestinal inflammation in CD. These findings may be novel potential targets in CD.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Cong Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - You-You Jin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yun-Qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yao-Jia-Ni Cao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun-Yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Huan-Gan Wu
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Dan Zhang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Guang Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Jue Hong
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Yan-Ting Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
- Correspondence: Xiao-Peng Ma; Yan-Ting Yang, Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China, Email ;
| |
Collapse
|
9
|
He M, Li C, Tang W, Kang Y, Zuo Y, Wang Y. Machine learning gene expression predicting model for ustekinumab response in patients with Crohn's disease. Immun Inflamm Dis 2021; 9:1529-1540. [PMID: 34469062 PMCID: PMC8589399 DOI: 10.1002/iid3.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Recent studies reported the responses of ustekinumab (UST) for the treatment of Crohn's disease (CD) differ among patients, while the cause was unrevealed. The study aimed to develop a prediction model based on the gene transcription profiling of patients with CD in response to UST. Methods The GSE112366 dataset, which contains 86 CD and 26 normal samples, was downloaded for analysis. Differentially expressed genes (DEGs) were identified first. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were administered. Least absolute shrinkage and selection operator regression analysis was performed to build a model for UST response prediction. Results A total of 122 DEGs were identified. GO and KEGG analyses revealed that immune response pathways are significantly enriched in patients with CD. A multivariate logistic regression equation that comprises four genes (HSD3B1, MUC4, CF1, and CCL11) for UST response prediction was built. The area under the receiver operator characteristic curve for patients in training set and testing set were 0.746 and 0.734, respectively. Conclusions This study is the first to build a gene expression prediction model for UST response in patients with CD and provides valuable data sources for further studies.
Collapse
Affiliation(s)
- Manrong He
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wanxin Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingxi Kang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongdi Zuo
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zheng S, Zhuang T, Tang Y, Wu R, Xu T, Leng T, Wang Y, Lin Z, Ji M. Leonurine protects against ulcerative colitis by alleviating inflammation and modulating intestinal microflora in mouse models. Exp Ther Med 2021; 22:1199. [PMID: 34584544 PMCID: PMC8422400 DOI: 10.3892/etm.2021.10633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colon. The aim of the present study was to explore the effects of leonurine (YMJ) on inflammation and intestinal microflora in colonic tissues of a dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model. Mice were randomly divided into control (n=5), DSS (n=5, treated with DSS) and DSS+YMJ (n=5, treated with DSS and YMJ) groups. Body weight was recorded, disease activity index (DAI) was calculated, and colon histopathology was evaluated using hematoxylin and eosin staining. Serum interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and IL-1β levels were examined using ELISA. Expression levels of nuclear factor-κB (p65) and phosphorylated (p)-p65 were evaluated via western blotting. 16S ribosomal RNA was extracted from mouse feces. Composition or abundance changes of intestinal microflora were analyzed. The results indicated that YMJ treatment (DSS+YMJ group) significantly increased body weight, reduced DAI scores and increased colon length in UC mouse models compared with those in the DSS group (P<0.05). YMJ significantly reduced inflammatory infiltration, significantly decreased serum TNF-α, IL-6 and IL-1β levels (P<0.05) and significantly downregulated the p-p65/p65 ratio compared with the DSS group (P<0.05). YMJ increased the quantity of the intestinal flora and improved intestinal microflora diversity in the mice of the DSS group. Specifically, YMJ partly regulated intestinal microflora in feces, including a reduction of Bifidobacterium, and an increase in Parasutterella and Ackermania. In conclusion, YMJ improved disease outcomes of the UC mice, reduced the levels of serum inflammatory factors and increased the ratio of beneficial bacteria in the intestinal tract.
Collapse
Affiliation(s)
- Suna Zheng
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yajun Tang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ruihan Wu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tian Leng
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Zheng Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
11
|
Wu R, Long L, Zhou Q, Su J, Su W, Zhu J. Identification of hub genes in rheumatoid arthritis through an integrated bioinformatics approach. J Orthop Surg Res 2021; 16:458. [PMID: 34271942 PMCID: PMC8283956 DOI: 10.1186/s13018-021-02583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a common chronic autoimmune disease characterized by inflammation of the synovial membrane. However, the etiology and underlying molecular events of RA are unclear. Here, we applied bioinformatics analysis to identify the key genes involved in RA. Methods GSE77298 was downloaded from the Gene Expression Omnibus (GEO) database. We used the R software screen the differentially expressed genes (DEGs). Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway were analyzed by using the DAVID online tool. The STRING database was used to analyze the interaction of differentially encoded proteins. PPI interaction network was divided into subnetworks using MCODE algorithm and was analyzed using Cytoscape. Gene set enrichment analysis (GSEA) was performed to identify relevant biological functions. qRT-PCR analysis was also performed to verify the expression of identified hub DEGs. Results A total of 4062 differentially expressed genes were selected, including 1847 upregulated genes and 2215 downregulated genes. In the biological process, DEGs were mainly concentrated in the fields of muscle filament sliding, muscle contraction, intracellular signal transduction, cardiac muscle contraction, signal transduction, and skeletal muscle tissue development. In the cellular components, DEGs were mainly concentrated in the parts of cytosol, Z disk, membrane, extracellular exosome, mitochondrion, and M band. In molecular functions, DEGs were mainly concentrated in protein binding, structural constituent of muscle, actin binding, and actin filament binding. KEGG pathway analysis shows that DEGs mainly focuses on pathways about lysosome, Wnt/β-catenin signaling pathway, and NF-κB signaling pathway. CXCR3, GNB4, and CXCL16 were identified as the core genes that involved in the progression of RA. By qRT-PCR analysis, we found that CXCR3, GNB4, and CXCL16 were significantly upregulated in RA tissue as compared to healthy controls. Conclusion In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the progression of RA, and provide candidate targets for diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Rui Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wei Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West of First Ring Road, Chengdu, Sichuan, 610072, P.R. China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
12
|
Chen ZA, Sun YF, Wang QX, Ma HH, Ma ZZ, Yang CJ. Integrated Analysis of Multiple Microarray Studies to Identify Novel Gene Signatures in Ulcerative Colitis. Front Genet 2021; 12:697514. [PMID: 34306038 PMCID: PMC8299473 DOI: 10.3389/fgene.2021.697514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic, complicated, inflammatory disease with an increasing incidence and prevalence worldwide. However, the intrinsic molecular mechanisms underlying the pathogenesis of UC have not yet been fully elucidated. Methods: All UC datasets published in the GEO database were analyzed and summarized. Subsequently, the robust rank aggregation (RRA) method was used to identify differentially expressed genes (DEGs) between UC patients and controls. Gene functional annotation and PPI network analysis were performed to illustrate the potential functions of the DEGs. Some important functional modules from the protein-protein interaction (PPI) network were identified by molecular complex detection (MCODE), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), and analyses were performed. The results of CytoHubba, a plug for integrated algorithm for biomolecular interaction networks combined with RRA analysis, were used to identify the hub genes. Finally, a mouse model of UC was established by dextran sulfate sodium salt (DSS) solution to verify the expression of hub genes. Results: A total of 6 datasets met the inclusion criteria (GSE38713, GSE59071, GSE73661, GSE75214, GSE87466, GSE92415). The RRA integrated analysis revealed 208 significant DEGs (132 upregulated genes and 76 downregulated genes). After constructing the PPI network by MCODE plug, modules with the top three scores were listed. The CytoHubba app and RRA identified six hub genes: LCN2, CXCL1, MMP3, IDO1, MMP1, and S100A8. We found through enrichment analysis that these functional modules and hub genes were mainly related to cytokine secretion, immune response, and cancer progression. With the mouse model, we found that the expression of all six hub genes in the UC group was higher than that in the control group (P < 0.05). Conclusion: The hub genes analyzed by the RRA method are highly reliable. These findings improve the understanding of the molecular mechanisms in UC pathogenesis.
Collapse
Affiliation(s)
- Zi-An Chen
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-Feng Sun
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Quan-Xu Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui-Hui Ma
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Zhao Ma
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-Jie Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Li Y, Wang Z, Wu X, Wang G, Gu G, Ren H, Hong Z, Ren J. Intestinal mucosa-derived DNA methylation signatures in the penetrating intestinal mucosal lesions of Crohn's disease. Sci Rep 2021; 11:9771. [PMID: 33963246 PMCID: PMC8105344 DOI: 10.1038/s41598-021-89087-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to evaluate genome-wide DNA methylation changes in intestinal mucosa tissue of adult patients with Crohn's disease comprehensively. DNA methylation chip was used to analyze abnormal methylation sites among penetrating and non-penetrating intestinal mucosa tissue of Crohn's disease and normal intestinal mucosa tissue of healthy controls. Methylation abnormalities of different locus were verified by pyrosequencing and quantitative polymerase chain reaction. Differential DNA methylation sites were participated in the positive regulation of apoptosis and the positive regulation of IL-8 production and were enriched in signaling pathways related to inflammatory bowel disease and extracellular matrix receptor interaction signaling pathways. Correlation analysis showed that the methylation abnormalities of HLA-DRB1 (r = - 0.62, P < 0.001), MUC1 (r = - 0.45, P = 0.01), YPEL5 (r = - 0.55, P = 0.001) and CBLB (r = - 0.62, P < 0.001) were significantly negatively correlated with their relative expression levels. The degree of methylation abnormality of MUC1 was negatively correlated with the disease activity score of Crohn's disease (r = - 0.50, P = 0.01). Apoptosis, interleukin-8 production and abnormal extracellular matrix might be involved in the mechanism of penetrating intestinal mucosal lesions in Crohn's disease. The degree of abnormal methylation of MUC1 was negatively correlated with the disease activity of Crohn's disease.
Collapse
Affiliation(s)
- Yuan Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiming Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Guosheng Gu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Zhiwu Hong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
14
|
Yu B, Yin YX, Tang YP, Wei KL, Pan ZG, Li KZ, Guo XW, Hu BL. Diagnostic and Predictive Value of Immune-Related Genes in Crohn's Disease. Front Immunol 2021; 12:643036. [PMID: 33936061 PMCID: PMC8085323 DOI: 10.3389/fimmu.2021.643036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Abnormal immune cell infiltration is associated with the pathogenesis of Crohn’s disease (CD). This study aimed to determine the diagnostic and predictive value of immune-related genes in CD. Seven Gene Expression Omnibus datasets that analyzed the gene expression in CD tissues were downloaded. Single-sample gene set enrichment analysis (ssGSEA) was used to estimate the infiltration of the immune cells in CD tissues. Immune-related genes were screened by overlapping the immune-related genes with differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was used to identify key immune-related DEGs. Diagnostic value of CD and predictive value of anti-TNFα therapy were analyzed. Immunohistochemical (IHC) assay was used to verify gene expression in CD tissues. There were significant differences among CD tissues, paired CD tissues, and normal intestinal tissues regarding the infiltration of immune cells. AQP9, CD27, and HVCN1 were identified as the key genes of the three sub-clusters in the PPI network. AQP9, CD27, and HVCN1 had mild to moderate diagnostic value in CD, and the diagnostic value of AQP9 was better than that of CD27 and HVCN1. AQP9 expression was decreased in CD after patients underwent anti-TNFα therapy, but no obvious changes were observed in non-responders. AQP9 had a moderate predictive value in patients who had undergone treatment. IHC assay confirmed that the expression of AQP9, CD27, and HVCN1 in CD tissues was higher than that in normal intestinal tissues, and AQP9, CD27 was correlated with the activity of CD. Immune-related genes, AQP9, CD27, and HVCN1 may act as auxiliary diagnostic indicators for CD, and AQP9 could serve as a promising predictive indicator in patients who underwent anti-TNF therapy.
Collapse
Affiliation(s)
- Bing Yu
- Department of Gastroenterology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan-Ping Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kang-Lai Wei
- Department of Gastroenterology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Gang Pan
- Department of Gastroenterology, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xian-Wen Guo
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
15
|
Cao F, Cheng YS, Yu L, Xu YY, Wang Y. Bioinformatics Analysis of Differentially Expressed Genes and Protein-Protein Interaction Networks Associated with Functional Pathways in Ulcerative Colitis. Med Sci Monit 2021; 27:e927917. [PMID: 33462173 PMCID: PMC7824989 DOI: 10.12659/msm.927917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background This bioinformatics study aimed to identify differentially expressed genes (DEGs) and protein–protein interaction (PPI) networks associated with functional pathways in ulcerative colitis based on 3 Gene Expression Omnibus (GEO) datasets. Material/Methods The GSE87466, GSE75214, and GSE48958 MINiML formatted family files were downloaded from the GEO database. DEGs were identified from the 3 datasets, and volcano maps and heat maps were drawn after R language standardization and analysis, respectively. Venn diagram software was used to identify common DEGs. PPI analysis of common DEGs was performed using the Search Tool for the Retrieval of Interacting Genes. Gene modules and hub genes were visualized in the PPI network using Cytoscape. Enrichment analysis was performed for all common DEGs, module genes, and hub genes. Results A total of 90 DEGs were selected, which included 3 functional modules and 1 hub gene module. CXCL8 module genes were mainly enriched in cytokine-mediated signaling pathways and interleukin (IL)-10 signaling. CCL20 module genes were mainly enriched in the IL-17 signaling pathway and cellular response to IL-1. Hub gene modules mainly involved IL-10, IL-4, and IL-13 signaling pathways. CXCL8, CXCL1, and IL-1β were the top 3 hub genes and were mainly involved in IL-10 signaling. Conclusions Bioinformatics analysis using 3 GEO datasets identified CXCL8, CXCL1, and IL-1β, which are involved in IL-10 signaling, as the top 3 hub genes in ulcerative colitis. The findings from this study remain to be validated, but they may contribute to the further understanding of the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Feng Cao
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yun-Sheng Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Liang Yu
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yan-Yan Xu
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China (mainland)
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
16
|
Jeong SH, Park M, Park SY, Park J, Kim TH, Lee YJ, Jung EJ, Ju YT, Jeong CY, Kim JY, Ko GH, Kim M, Nam KT, Goldenring JR. Transcriptome Analysis and the Prognostic Role of NUDC in Diffuse and Intestinal Gastric Cancer. Technol Cancer Res Treat 2021; 20:15330338211019501. [PMID: 34060350 PMCID: PMC8173992 DOI: 10.1177/15330338211019501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION There have been few studies about gene differences between patients with diffuse-type gastric cancer and those with intestinal-type gastric cancer. The aim of this study was to compare the transcriptomes of signet ring cell gastric cancer (worst prognosis in diffuse-type) and well-differentiated gastric cancer (best prognosis in intestinal-type); NUDC was identified, and its prognostic role was studied. MATERIALS AND METHODS We performed next-generation sequencing with 5 well-differentiated gastric cancers and 3 of signet ring cell gastric cancer surgical samples. We performed gene enrichment and functional annotation analysis using the Database for Annotation, Visualization and Integrated Discovery bioinformatics resources. Immunohistochemistry was used to validate NUDC expression. RESULTS Overall, 900 genes showed significantly higher expression, 644 genes showed lower expression in signet ring cell gastric cancer than in well-differentiated gastric cancers, and there was a large difference in adhesion, vascular development, and cell-to-cell junction components between the 2 subtypes. We performed variant analysis and found 52 variants and 30 cancer driver genes, including NUDC. We analyzed NUDC expression in gastric cancer tissue and its relationship with prognosis. Cox proportional hazard analysis identified T stage, N stage, and NUDC expression as independent risk factors for survival (P < 0.05). The overall survival of the NUDC-positive group was significantly higher (53.2 ± 0.92 months) than that of the NUDC-negative group (44.6 ± 3.7 months) (P = 0.001) in Kaplan-Meier survival analysis. CONCLUSION We found 30 cancer driver gene candidates and found that the NUDC-positive group showed significantly better survival than the NUDC-negative group via variant analysis.
Collapse
Affiliation(s)
- Sang-Ho Jeong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
- Department of Surgery, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Sun Yi Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jiho Park
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Tae-Han Kim
- Department of Surgery, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Young-Joon Lee
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Eun-Jung Jung
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
- Department of Surgery, Gyeongsang National University, Changwon Hospital, Changwon, South Korea
| | - Young-tae Ju
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Chi-Young Jeong
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Ju-Yeon Kim
- Department of Surgery, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Gyung Hyuck Ko
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Minhye Kim
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science, Yonsei University College of Medicine, Seodaemun-gu, South Korea
| | | |
Collapse
|
17
|
Identification of Differential Intestinal Mucosa Transcriptomic Biomarkers for Ulcerative Colitis by Bioinformatics Analysis. DISEASE MARKERS 2020; 2020:8876565. [PMID: 33144895 PMCID: PMC7596466 DOI: 10.1155/2020/8876565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Background Ulcerative colitis (UC) is a complicated disease caused by the interaction between genetic and environmental factors that affect mucosal homeostasis and triggers inappropriate immune response. The purpose of the study was to identify significant biomarkers with potential therapeutic targets and the underlying mechanisms. Methods The gene expression profiles of GSE48958, GSE73661, and GSE59071 are from the GEO database. Differentially expressed genes (DEGs) were screened by the GEO2R tool. Next, the Database for Annotation, Visualization and Integrated Discovery (DAVID) was applied to analyze gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Then, protein-protein interaction (PPI) was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). Results There were a total of 128 common DEGs genes, including 86 upregulated genes enriched in extracellular space, regulation of inflammatory response, chemokine-mediated signaling pathway, response to lipopolysaccharide, and cell proliferation, while 42 downregulated genes enriched in the integral component of the membrane, the integral component of the plasma membrane, apical plasma membrane, symporter activity, and chloride channel activity. The KEGG pathway analysis results demonstrated that DEGs were particularly enriched in cytokine-cytokine receptor interaction, TNF signaling pathway, chemokine signaling pathway, pertussis, and rheumatoid arthritis. 18 central modules of the PPI networks were selected with Cytotype MCODE. Furthermore, 18 genes were found to significantly enrich in the extracellular space, inflammatory response, chemokine-mediated signaling pathway, TNF signaling pathway, regulation of cell proliferation, and immune response via reanalysis of DAVID. Conclusion The study identified DEGs, key target genes, functional pathways, and pathway analysis of UC, which may provide potential molecular targets and diagnostic biomarkers for UC.
Collapse
|
18
|
Yao J, Gao RY, Luo MH, Wei C, Wu BH, Guo LL, Wang LS, Wang JY, Li DF. Possible role of microRNA miRNA-IL-25 interaction in mice with ulcerative colitis. Bioengineered 2020; 11:862-871. [PMID: 32779953 PMCID: PMC8291871 DOI: 10.1080/21655979.2020.1804176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: The regulatory network of ulcerative colitis (UC)-associated miRNAs is not fully understood. In this study, we aim to investigate the global profile and regulatory network of UC associated miRNAs in the context of dextran sulfate sodium (DSS). Methods: UC was induced in C57BL mice using DSS. Differentially expressed miRNAs were screened by RNA sequencing and subjected to the Kyoto Encyclopedia of Genes and Genomes Pathway enrichment analysis. RT-qPCR was used to verify the differential expression of miRNAs and candidate target mRNA. Luciferase reporter vector bearing a miRNA binding site was constructed to verify the binding site of the miRNA on mRNA. Results:A total of 95 miRNAs (31 were up-regulated and 64 were down regulated) differentially expressed in the colonic tissues of the UC mice. Among the differentially expressed miRNAs, IL-25 pathway genes were enriched. Subsequent RT-qPCR confirmed a decreased expression of IL-25 and a significant up regulation of IL-25 target miRNAs including mmu-miR-135b-5p, mmu-miR-7239-5p and mmu-miR-691 in UC mice. Conclusion: Using the luciferase assay, we verified the biding sites of mmu-miR-135b-5p and mmu-miR-691 to the IL-25 3ʹUTR. In conclusion, mmu-miR-135b-5p:IL-25 and mmu-miR-691:IL-25 interactions are important pathways that may exert a protective role in UC.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Ruo-Yu Gao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Ming-Han Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Li-Liangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital , Shenzhen, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen People's Hospital , Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Li Z, Qi F, Li F. Identification of drug targets and potential molecular mechanisms for Wantong Jingu Tablet extract in treatment of rheumatoid arthritis: bioinformatics analysis of fibroblast-like synoviocytes. Chin Med 2020; 15:59. [PMID: 32518584 PMCID: PMC7275334 DOI: 10.1186/s13020-020-00339-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/25/2020] [Indexed: 01/20/2023] Open
Abstract
Background Rheumatoid arthritis-fibroblast-like synoviocytes (RA-FLSs) play important roles in pathogenesis of rheumatoid arthritis (RA). Wantong Jingu Tablet (WJT), a mixture of traditional Chinese medicine, is a potentially effective therapy for RA, but its underlying mechanism is unclear. In this study, we explore the effects of WJT on human RA-FLSs and the underlying molecular mechanism. Methods The major components of WJT were determined using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Cell proliferative ability was evaluated by CCK-8, colony formation assay, and EdU incorporation assay. Cell apoptotic capacity was examined by caspase-3 and caspase-9 activity test. Protein levels of Bax and Bcl-2 were investigated by western blotting. High-throughput sequencing and bioinformatics analysis were conducted to screen and identify targeted genes, followed by identification by qRT-PCR and western blotting. Results In this study, we have identified 346 compounds in WJT. Our results showed that WJT inhibited the RA-FLSs proliferation, and promoted apoptosis in a dose- and time-dependent manner. More importantly, 184 differentially expressed genes (DEGs) has been screened after WJT treatment based on DEGSeq2 and 278 DEGs was identified by DEGSeq2 combined with WGCNA. Then, 10 hub genes were identified based on two different analyses, while the expression levels of only SMC3, THOC1, BUB1, and STAG2 were decreased after WJT treatment, which was identical to the sequencing profiles. Conclusions WJT exerted its anti-proliferation and pro-apoptosis effects possibly through suppressing the expression of SMC3, THOC1, BUB1, and STAG2 in RA-FLSs. Thus, therapeutics targeting these genes may be a promising strategy for rescuing RA.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No. 126 Xinmin Street, Changchun, 130021 Jilin China
| | - Fangyuan Qi
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No. 126 Xinmin Street, Changchun, 130021 Jilin China
| | - Fan Li
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No. 126 Xinmin Street, Changchun, 130021 Jilin China.,The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, 130021 Jilin China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, 130021 Jilin China.,Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, 130021 Jilin China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang China
| |
Collapse
|
20
|
Potdar AA, Dube S, Naito T, Botwin G, Haritunians T, Li D, Yang S, Bilsborough J, Denson LA, Daly M, Targan SR, Fleshner P, Braun J, Kugathasan S, Stappenbeck TS, McGovern DP. Reduced expression of COVID-19 host receptor, ACE2 is associated with small bowel inflammation, more severe disease, and response to anti-TNF therapy in Crohn's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.19.20070995. [PMID: 32511625 PMCID: PMC7276052 DOI: 10.1101/2020.04.19.20070995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Angiotensin-Converting Enzyme 2 ( ACE2 ) has been identified as the host receptor for SARS-coronavirus 2 (SARS-CoV-2) which has infected millions world-wide and likely caused hundreds of thousands of deaths. Utilizing transcriptomic data from four cohorts taken from Crohn's disease (CD) and non-inflammatory bowel disease (IBD) subjects, we observed evidence of increased ACE2 mRNA in ileum with demographic features that have been associated with poor outcomes in COVID-19 including age and raised BMI. ACE2 was downregulated in CD compared to controls in independent cohorts. Within CD, ACE2 expression was reduced in inflamed ileal tissue and also remarkably, from uninvolved tissue in patients with a worse prognosis in both adult and pediatric cohorts. In active CD, small bowel ACE2 expression was restored by anti-TNF therapy particularly in anti-TNF responders. Collectively our data suggest that ACE2 downregulation is associated with inflammation and worse outcomes in CD.
Collapse
Affiliation(s)
- Alka A. Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shishir Dube
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Takeo Naito
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gregory Botwin
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaohong Yang
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Janine Bilsborough
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lee A. Denson
- Division of Pediatric Gastroenterology, Hepatology, and nutrition, Department of Pediatrics, University of Cincinnati college of Medicine and the Cincinnati children’s Hospital Medical center, Cincinnati, OH, USA
| | - Mark Daly
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Fleshner
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan Braun
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | | | - Dermot P.B. McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
21
|
Li W, Deng G, Zhang J, Hu E, He Y, Lv J, Sun X, Wang K, Chen L. Identification of breast cancer risk modules via an integrated strategy. Aging (Albany NY) 2019; 11:12131-12146. [PMID: 31860871 PMCID: PMC6949069 DOI: 10.18632/aging.102546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common malignant cancers among females worldwide. This complex disease is not caused by a single gene, but resulted from multi-gene interactions, which could be represented by biological networks. Network modules are composed of genes with significant similarities in terms of expression, function and disease association. Therefore, the identification of disease risk modules could contribute to understanding the molecular mechanisms underlying breast cancer. In this paper, an integrated disease risk module identification strategy was proposed according to a multi-objective programming model for two similarity criteria as well as significance of permutation tests in Markov random field module score, function consistency score and Pearson correlation coefficient difference score. Three breast cancer risk modules were identified from a breast cancer-related interaction network. Genes in these risk modules were confirmed to play critical roles in breast cancer by literature review. These risk modules were enriched in breast cancer-related pathways or functions and could distinguish between breast tumor and normal samples with high accuracy for not only the microarray dataset used for breast cancer risk module identification, but also another two independent datasets. Our integrated strategy could be extended to other complex diseases to identify their risk modules and reveal their pathogenesis.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gui Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ji Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Erqiang Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|