1
|
Zhu X, Jin Q, Liu X. Advantages of edaravone dextrosanol in elderly patients with acute cerebral infarction versus edaravone: a preliminary study. Int J Neurosci 2024:1-8. [PMID: 38506060 DOI: 10.1080/00207454.2024.2328730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze and compare the application advantages of Edaravone and Edaravone Dextrosanol in elderly patients with acute cerebral infarction (ACI). METHODS A retrospective analysis of clinical data from 113 elderly AIS patients admitted to our hospital between January 2022 and January 2023 was conducted. Based on the treatment interventions received, patients were divided into a control group (n = 56) and an observation group (n = 57). The control group received Edaravone in addition to routine treatment, while the observation group received Edaravone Dextrosanol in addition to routine treatment. compared clinical outcomes, motor and neurological function, self-care ability, neural damage indicators, inflammatory markers, and adverse reactions between the two groups. RESULTS ① Total effective rate in the observation group (91.23%) was significantly higher than that in the control group (75.00%) (p < 0.05). ② After treatment, higher FMA and Barthel scores, lower NDS score in observation group vs control group (p < 0.05). ③ After treatment, lower NSE and MMP-9 levels in observation group vs control group (p < 0.05). ④ After treatment, lower IL-1β, IL-6, and hs-CRP levels in observation group vs control group (p < 0.05). ⑤ No significant difference in adverse reaction incidence between groups (p > 0.05). CONCLUSION Edaravone Dextrosanol proves effective in treating elderly AIS patients. Compared to Edaravone, it boosts effectiveness, neurological recovery, motor & self-care abilities, and reduces neural damage & inflammation markers. Its safety profile is comparable to Edaravone, without significantly increasing adverse reactions. These findings suggest that Edaravone Dextrosanol is worthy of clinical promotion.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Neurology, Tongxiang First People's Hospital, Tongxiang, Zhejiang, P.R.China
| | - Qiang Jin
- Department of Neurology, Tongxiang First People's Hospital, Tongxiang, Zhejiang, P.R.China
| | - Xiaojing Liu
- Department of Neurology, Tongxiang First People's Hospital, Tongxiang, Zhejiang, P.R.China
| |
Collapse
|
2
|
Fu TC, Wang GR, Li YX, Xu ZF, Wang C, Zhang RC, Ma QT, Ma YJ, Guo Y, Dai XY, Guo Y. Mobilizing endogenous neuroprotection: the mechanism of the protective effect of acupuncture on the brain after stroke. Front Neurosci 2024; 18:1181670. [PMID: 38737099 PMCID: PMC11084281 DOI: 10.3389/fnins.2024.1181670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.
Collapse
Affiliation(s)
- Tian-cong Fu
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guan-ran Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu-xuan Li
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhi-fang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Can Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Run-chen Zhang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qing-tao Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ya-jing Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-yu Dai
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Chen Y, Zhang C, Zhao L, Chen R, Zhang P, Li J, Zhang X, Zhang X. Eriocalyxin B alleviated ischemic cerebral injury by limiting microglia-mediated excessive neuroinflammation in mice. Exp Anim 2024; 73:124-135. [PMID: 37839867 PMCID: PMC10877152 DOI: 10.1538/expanim.23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Excessive neuroinflammation mediated by microglia has a detrimental effect on the progression of ischemic stroke. Eriocalyxin B (EriB) was found with a neuroprotective effect in mice with Parkinson's disease via the suppression of microglial overactivation. This study aimed to investigate the roles of EriB in permanent middle cerebral artery occlusion (pMCAO) mice. The pMCAO was induced in the internal carotid artery of the mice by the intraluminal filament method, and EriB (10 mg/kg) was administered immediately after surgery by intraperitoneal injection. The behavior score, 2,3,5-triphenyltetrazole chloride staining, Nissl staining, TUNEL, immunohistochemistry, immunofluorescence, PCR, ELISA, and immunoblotting revealed that EriB administration reduced brain infarct and neuron death and ameliorated neuroinflammation and microglia overactivation in pMCAO mice, manifested by alterations of TUNEL-positive cell numbers, ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell numbers, and expression of tumor necrosis factor-α, interleukin 6, IL-1β, inducible nitric oxide synthase, and arginase 1. In addition, EriB suppressed ischemia-induced activation of nuclear factor kappa B (NF-κB) signaling in the brain penumbra, suggesting the involvement of NF-κB in EriB function. In conclusion, EriB exerted anti-inflammatory effects in ischemia stroke by regulating the NF-κB signaling pathway, and this may provide insights into the neuroprotective effect of EriB in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yanqiang Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Liming Zhao
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Junxia Li
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xueping Zhang
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| |
Collapse
|
4
|
Feng R, Luo L, Han Z, Qi Y, Xiao H, Huang C, Peng W, Liu R, Huang Z. 3'-Daidzein Sulfonate Sodium Protects against Glutamate-induced Neuronal Injuries by Regulating NMDA Receptors. Curr Pharm Des 2024; 30:1762-1770. [PMID: 38778603 DOI: 10.2174/0113816128299123240505172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It was previously found that 3'-Daidzein Sulfonate Sodium (DSS) exhibits protective effects on cerebral ischemia/reperfusion injury (CI/RI). AIM This study aimed to explore the underlying molecular mechanisms involved in the neuroprotective effects of DSS against ischemic stroke. METHODS In this study, rats with transient middle cerebral artery occlusion (tMCAO) were used as an in vivo model, whereas PC12 cells treated with glutamate alone and rat primary cortical neurons treated with the combination of glutamate and glycine were used as in vitro models. Cell viability and lactate dehydrogenase (LDH) release were used to evaluate cell injury. Cell apoptosis was determined by flow cytometry. Quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescent staining methods were used to determine the mRNA expressions and protein levels and location. RESULTS It was found that DSS significantly suppressed the impaired viability of PC12 cells induced by glutamate. DSS also increased cell viability while reducing the LDH release and apoptosis in primary cortical neurons injured by glutamate and glycine. In addition, DSS decreased GluN2B subunit expression while enhancing the expressions of GluN2A subunit and PSD95 in tMCAO rats' brains. CONCLUSION This study demonstrated that DSS protects against excitotoxic damage in neurons induced by CI/RI through regulating the expression of NMDA receptors and PSD95. Our findings provide experimental evidence for the potential clinical administration of DSS in ischemic stroke.
Collapse
Affiliation(s)
- Ruixue Feng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
| | - Li Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
| | - Zun Han
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
| | - Yue Qi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Graduate School of Gannan Medical University, Ganzhou 341000, China
| | - Hai Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cheng Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Ruizhen Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Li F, Mao Q, Wang J, Zhang X, Lv X, Wu B, Yan T, Jia Y. Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway. Metab Brain Dis 2022; 37:2965-2978. [PMID: 35976554 DOI: 10.1007/s11011-022-01061-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Cerebral ischemia reperfusion injury (CIRI) is still a serious problem threatening human health. Salidroside (SAL) is a natural phenylpropanoid glycoside compound with antioxidant, anti-inflammatory, and anti-ischemic properties. This study investigated the protective mechanism of SAL on middle cerebral artery occlusion (MCAO)- and oxygen-glucose deprivation/reoxygenation (OGD/R) model-induced CIRI via regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/thioredoxin 1 (Trx1) axis. The results indicated that SAL (50 mg/kg or 100 mg/kg, intraperitoneal injection) not only effectively alleviated infarction rate, improved histopathological changes, relieved apoptosis by strengthening the suppression of cleaved caspase-3 and Bax/Bcl-2 proteins and decreased malondialdehyde (MDA) formation, but also increased superoxide dismutase (SOD) and catalase (CAT) activities and upregulated the expressions of Nrf2 and Trx1 on MCAO-induced CIRI rats. SAL also efficiently inhibited apoptosis and decreased oxidative stress in OGD/R-stimulated PC12 cells. Furthermore, blocking the Nrf2/Trx1 pathway using tretinoin, an Nrf2 inhibitor, significantly reversed the protective effect of SAL on OGD/R-induced oxidative stress. Moreover, SAL reduced the expression of apoptosis signal-regulating kinase-1 (ASK1) and mitogen-activated protein kinase (MAPK) family proteins. These results demonstrated that SAL inhibited oxidative stress through Nrf2/Trx1 signaling pathway, and subsequently reduced CIRI-induced apoptosis by inhibiting ASK1/MAPK.
Collapse
Affiliation(s)
- Fuyuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qianqian Mao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinyu Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| |
Collapse
|
6
|
Torres-Querol C, Quintana-Luque M, Arque G, Purroy F. Preclinical evidence of remote ischemic conditioning in ischemic stroke, a metanalysis update. Sci Rep 2021; 11:23706. [PMID: 34887465 PMCID: PMC8660795 DOI: 10.1038/s41598-021-03003-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 01/13/2023] Open
Abstract
Remote ischemic conditioning (RIC) is a promising therapeutic approach for ischemic stroke patients. It has been proven that RIC reduces infarct size and improves functional outcomes. RIC can be applied either before ischemia (pre-conditioning; RIPreC), during ischemia (per-conditioning; RIPerC) or after ischemia (post-conditioning; RIPostC). Our aim was to systematically determine the efficacy of RIC in reducing infarct volumes and define the cellular pathways involved in preclinical animal models of ischemic stroke. A systematic search in three databases yielded 50 peer-review articles. Data were analyzed using random effects models and results expressed as percentage of reduction in infarct size (95% CI). A meta-regression was also performed to evaluate the effects of covariates on the pooled effect-size. 95.3% of analyzed experiments were carried out in rodents. Thirty-nine out of the 64 experiments studied RIPostC (61%), sixteen examined RIPreC (25%) and nine tested RIPerC (14%). In all studies, RIC was shown to reduce infarct volume (- 38.36%; CI - 42.09 to - 34.62%) when compared to controls. There was a significant interaction caused by species. Short cycles in mice significantly reduces infarct volume while in rats the opposite occurs. RIPreC was shown to be the most effective strategy in mice. The present meta-analysis suggests that RIC is more efficient in transient ischemia, using a smaller number of RIC cycles, applying larger length of limb occlusion, and employing barbiturates anesthetics. There is a preclinical evidence for RIC, it is safe and effective. However, the exact cellular pathways and underlying mechanisms are still not fully determined, and its definition will be crucial for the understanding of RIC mechanism of action.
Collapse
Affiliation(s)
- Coral Torres-Querol
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Manuel Quintana-Luque
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Arque
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
- Experimental Medicine Department, Universitat de Lleida, Lleida, Spain
| | - Francisco Purroy
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Medicine Department, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Clinical Neurosciences Group IRBLleida, Avda Rovira Roure 80, 25198, Lleida, Spain.
| |
Collapse
|
7
|
Wang X, Ji X. Interactions between remote ischemic conditioning and post-stroke sleep regulation. Front Med 2021; 15:867-876. [PMID: 34811643 DOI: 10.1007/s11684-021-0887-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022]
Abstract
Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine, activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation. In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep quality.
Collapse
Affiliation(s)
- Xian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100069, China.
| |
Collapse
|
8
|
Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L. Icaritin Alleviates Glutamate-Induced Neuronal Damage by Inactivating GluN2B-Containing NMDARs Through the ERK/DAPK1 Pathway. Front Neurosci 2021; 15:525615. [PMID: 33692666 PMCID: PMC7937872 DOI: 10.3389/fnins.2021.525615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/02/2021] [Indexed: 01/29/2023] Open
Abstract
Excitatory toxicity due to excessive glutamate release is considered the core pathophysiological mechanism of cerebral ischemia. It is primarily mediated by N-methyl-D-aspartate receptors (NMDARs) on neuronal membranes. Our previous studies have found that icaritin (ICT) exhibits neuroprotective effects against cerebral ischemia in rats, but the underlying mechanism is unclear. This study aims to investigate the protective effect of ICT on glutamate-induced neuronal injury and uncover its possible molecular mechanism. An excitatory toxicity injury model was created using rat primary cortical neurons treated with glutamate and glycine. The results showed that ICT has neuroprotective effects on glutamate-treated primary cortical neurons by increasing cell viability while reducing the rate of lactate dehydrogenase (LDH) release and reducing apoptosis. Remarkably, ICT rescued the changes in the ERK/DAPK1 signaling pathway after glutamate treatment by increasing the expression levels of p-ERK, p-DAPK1 and t-DAPK1. In addition, ICT also regulates NMDAR function during glutamate-induced injury by decreasing the expression level of the GluN2B subunit and enhancing the expression level of the GluN2A subunit. As cotreatment with the ERK-specific inhibitor U0126 and ICT abolishes the beneficial effects of ITC on the ERK/DAPK1 pathway, NMDAR subtypes and neuronal cell survival, ERK is recognized as a crucial mediator in the protective mechanism of ICT. In conclusion, our findings demonstrate that ICT has a neuroprotective effect on neuronal damage induced by glutamate, and its mechanism may be related to inactivating GluN2B-containing NMDAR through the ERK/DAPK1 pathway. This study provides a new clue for the prevention and treatment of clinical ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chaoming Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lijiao Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Cheng Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Liangdong Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Electroacupuncture Attenuates Inflammation after Ischemic Stroke by Inhibiting NF- κB-Mediated Activation of Microglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8163052. [PMID: 32922507 PMCID: PMC7453260 DOI: 10.1155/2020/8163052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Microglial activation and microglia-mediated inflammation play an important role in the occurrence, development, and outcome of stroke. Brain injury induces the activation and release of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin- (IL-) 1β, and IL-6. Many studies have confirmed that acupuncture is effective in treating ischemic stroke. However, its protective mechanism against ischemic brain injury is complex and multifactorial. In this study, we observed the effects of electroacupuncture at Baihui (GV20) and Dazhui (GV14) on microglial activation and inflammation in the cortical ischemic penumbra (IP) of permanent middle cerebral artery occlusion (pMCAO) rats. It was found that electroacupuncture inhibited the degeneration and necrosis of microglia in the cortical IP and ameliorated mitochondrial damage. Immunofluorescence and western blot analysis showed that microglia were in a resting state or weakly activated in the normal brain. After cerebral ischemia, the expression of microglial markers (Iba-1 and CD11b) increased, and NF-κB p65, IL-1β, and TNF-α expression gradually increased. The dynamic changes were generally temporally consistent. Electroacupuncture downregulated the expressions of Iba-1 and CD11b. Additionally, it inhibited the expression of NF-κB p65, IL-1β, and TNF-α and reduced the conversion of microglia to the M1 phenotype after ischemia. Electroacupuncture regulated the activation of microglia and microglia-mediated inflammation after cerebral ischemia, confirming the relevant theories regarding the effect of acupuncture treatment on cerebral ischemia and guiding clinical practice.
Collapse
|
10
|
Inhibition of IL-32 Expression Ameliorates Cerebral Ischemia-Reperfusion Injury via the NOD/MAPK/NF-κB Signaling Pathway. J Mol Neurosci 2020; 70:1713-1727. [PMID: 32474900 DOI: 10.1007/s12031-020-01557-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia represents a major cause of disability, yet its precise mechanism remains unknown. In addition, ischemia-reperfusion injury which occurs during the blood recovery process increases the risk of mortality, and is not adequately addressed with current treatment. To improve therapeutic options, it is important to explore the vital substances that play a pivotal role in ischemia-reperfusion injury. This study is the first to investigate the role of IL-32, a vital pro-inflammatory factor, in models of cerebral ischemia-reperfusion injury. The results showed that IL-32 was highly expressed in both in vivo and in vitro models. The proteins of the NOD/MAPK/NF-κB pathway were also up-regulated, indicating a potential signaling pathway mechanism. Inhibition of IL-32 and blocking of the NOD/MAPK/NF-κB pathway increased cell survival, decreased the level of inflammatory factors and inflammasomes, and attenuated nitrosative stress. Taken together, the results show that inhibition of IL-32 expression ameliorates cerebral ischemia-reperfusion injury via the NOD/MAPK/NF-κB signaling pathway. The findings in this study reveal that IL-32 is a vital target of ischemia-reperfusion injury, providing a new avenue for treatment development.
Collapse
|