1
|
Ramadan AG, Abdel-Rehim WM, El-Tahan RA, Elblehi SS, Kamel MA, Shaker SA. Maternal and paternal obesity differentially reprogram the ovarian mitochondrial biogenesis of F1 female rats. Sci Rep 2023; 13:15480. [PMID: 37726284 PMCID: PMC10509203 DOI: 10.1038/s41598-023-42468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Obesity has harmful consequences on reproductive outcomes and the rapid increase in obesity is assumed to be influenced by epigenetics and trans-generation effects. Our study aimed to explore the effect of maternal and/or paternal obesity on the ovarian tissues of the first-generation female offspring in rats. The study was conducted on 40 adult Wistar albino rats (20 males and 20 females). Obesity was induced by feeding them an obesogenic diet for 3 months. The pregnancy was induced in the females by mating with males in four combinations: healthy mother with healthy father (control parents, CP), healthy mother with obese fathers (OF), obese mothers with healthy father (OM), and obese mother with obese father (obese parents, OP). After delivery, the female offspring at two months were sacrificed, and the blood and ovarian tissues were collected to assess the studied parameters. Our result showed differential impacts of maternal and paternal obesity on the ovarian health of the female offspring. The female offspring of obese OM or OP showed early signs of obesity. These metabolic abnormalities were associated with signs of ovarian lesions, impaired folliculogenesis, and decreased oocyte quality and also showed significant alterations in mitochondrial biogenesis, redox status, inflammation, and microRNAs expression (miR-149 and miR-494). In conclusion, altered ovarian expression of microRNAs and associated impaired mitochondrial biogenesis pathways may be the root causes for the observed intergeneration transmission of the obesogenic phenotype.
Collapse
Affiliation(s)
- Amina G Ramadan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt.
| | - Wafaa M Abdel-Rehim
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt
| | - Rasha A El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt
| | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB: 21561, Alexandria, Egypt.
| |
Collapse
|
2
|
Mahmoud SA, Abdel-Aziz MM, Khafaga RHM, Hafez HA, Kamel MA, Shaker SA. The pre-conception maternal exposure to Sofosbuvir affects the mitochondrial biogenesis in prenatal fetal tissues: Experimental study on rats. Mol Med 2023; 29:71. [PMID: 37280507 PMCID: PMC10243043 DOI: 10.1186/s10020-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a global public health problem and Egypt has the highest HCV prevalence worldwide. Hence, global efforts target to eliminate HCV by 2030. Sofosbuvir is a nucleotide analogue inhibitor of HCV polymerase essential for viral replication. Animal studies prove that Sofosbuvir metabolites cross the placenta and are excreted in the milk of nursing animals. We aimed to investigate the possible effects of preconception maternal exposure to Sofosbuvir on mitochondrial biogenesis in prenatal fetal liver, skeletal muscle, and placental tissues. METHODS The study was conducted on 20 female albino rats divided into a control group receiving a placebo and an exposed group receiving 4 mg/kg orally/day for 3 months of Sofosbuvir. At the end of the treatment period, pregnancy was induced in both groups by mating with healthy male rats overnight. At gestational day 17, all pregnant female rats were sacrificed. Each fetus was dissected to obtain the fetal liver, skeletal muscle, and placental tissues. RESULTS The results of our study indicated that the exposure of young female rats to Sofosbuvir affects pregnancy outcomes. Fetal liver and muscle showed lower mitochondrial DNA-copy number (mtDNA-CN) by about 24% and 29% respectively, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and its downstream targets; nuclear respiratory factor-1 and mitochondrial transcription factor A. While the placental tissues showed different patterns, particularly elevated in mtDNA-CN by about 43%. CONCLUSIONS The study provides preliminary evidence of the detrimental effects of Sofosbuvir on the pregnancy outcomes of the exposed females and may impair the placental and fetal organs' development. These effects may be mediated through modulating mitochondrial homeostasis and functions.
Collapse
Affiliation(s)
- Shimaa A Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, P.O. Box 21561, Alexandria, Egypt.
| | - Maryam M Abdel-Aziz
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, P.O. Box 21561, Alexandria, Egypt
| | - Rana H M Khafaga
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, P.O. Box 21561, Alexandria, Egypt
| | - Hala A Hafez
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, P.O. Box 21561, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, P.O. Box 21561, Alexandria, Egypt
| | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, P.O. Box 21561, Alexandria, Egypt
| |
Collapse
|
3
|
Koh YC, Ho CT, Pan MH. The Role of Mitochondria in Phytochemically Mediated Disease Amelioration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6775-6788. [PMID: 37125676 PMCID: PMC10178808 DOI: 10.1021/acs.jafc.2c08921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Mitochondrial dysfunction may cause cell death, which has recently emerged as a cancer prevention and treatment strategy mediated by chemotherapy drugs or phytochemicals. However, most existing drugs cannot target cancerous cells and may adversely affect normal cells via side effects. Mounting studies have revealed that phytochemicals such as resveratrol could ameliorate various diseases with dysfunctional or damaged mitochondria. For instance, resveratrol can regulate mitophagy, inhibit oxidative stress and preserve membrane potential, induce mitochondrial biogenesis, balance mitochondrial fusion and fission, and enhance the functionality of the electron transport chain. However, there are only a few studies suggesting that phytochemicals could potentially protect against the cytotoxicity of some current cancer drugs, especially those that damage mitochondria. Besides, COVID-19 and long COVID have also been reported to be correlated to mitochondrial dysfunction. Curcumin has been reported bringing a positive impact on COVID-19 and long COVID. Therefore, in this study, the benefits of resveratrol and curcumin to be applied for cancer treatment/prevention and disease amelioration were reviewed. Besides, this review also provides some perspectives on phytochemicals to be considered as a treatment adjuvant for COVID-19 and long COVID by targeting mitochondrial rescue. Hopefully, this review can provide new insight into disease treatment with phytochemicals targeting mitochondria.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
4
|
Alsenousy AHA, El-Tahan RA, Ghazal NA, Piñol R, Millán A, Ali LMA, Kamel MA. The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues. Pharmaceutics 2022; 14:pharmaceutics14102134. [PMID: 36297569 PMCID: PMC9607364 DOI: 10.3390/pharmaceutics14102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Obesity is a pandemic disease that is rapidly growing into a serious health problem and has economic impact on healthcare systems. This bleak image has elicited creative responses, and nanotechnology is a promising approach in obesity treatment. This study aimed to investigate the anti-obesity effect of superparamagnetic iron oxide nanoparticles (SPIONs) on a high-fat-diet rat model of obesity and compared their effect to a traditional anti-obesity drug (orlistat). METHODS The obese rats were treated daily with orlistat and/or SPIONs once per week for 8 weeks. At the end of the experiment, blood samples were collected for biochemical assays. Then, the animals were sacrificed to obtain white adipose tissues (WAT) and brown adipose tissues (BAT) for assessment of the expression of thermogenic genes and mitochondrial DNA copy number (mtDNA-CN). RESULTS For the first time, we reported promising ameliorating effects of SPIONs treatments against weight gain, hyperglycemia, adiponectin, leptin, and dyslipidemia in obese rats. At the molecular level, surprisingly, SPIONs treatments markedly corrected the disturbed expression and protein content of inflammatory markers and parameters controlling mitochondrial biogenesis and functions in BAT and WAT. CONCLUSIONS SPIONs have a powerful anti-obesity effect by acting as an inducer of WAT browning and activator of BAT functions.
Collapse
Affiliation(s)
- Aisha H. A. Alsenousy
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| | - Rasha A. El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Nesma A. Ghazal
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Rafael Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Angel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lamiaa M. A. Ali
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| |
Collapse
|
5
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|