1
|
Giannoni E, Sanchez Sanchez G, Verdebout I, Papadopoulou M, Rezwani M, Ahmed R, Ladell K, Miners KL, McLaren JE, Fraser DJ, Price DA, Eberl M, Agyeman PKA, Schlapbach LJ, Vermijlen D. Sepsis shapes the human γδ TCR repertoire in an age- and pathogen-dependent manner. Eur J Immunol 2024; 54:e2451190. [PMID: 39072722 DOI: 10.1002/eji.202451190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Sepsis affects 25 million children per year globally, leading to 2.9 million deaths and substantial disability in survivors. Extensive characterization of interactions between the host and bacteria in children is required to design novel preventive and therapeutic strategies tailored to this age group. Vγ9Vδ2 T cells are the first T cells generated in humans. These cells are defined by the expression of Vγ9Vδ2 T-cell receptors (TCRs, using the TRGV9 and TRDV2 gene segments), which react strongly against the prototypical bacterial phosphoantigen HMBPP. We investigated this reactivity by analyzing the TCR δ (TRD) repertoire in the blood of 76 children (0-16 years) with blood culture-proven bacterial sepsis caused by HMBPP-positive Escherichia coli or by HMBPP-negative Staphylococcus aureus or by HMBPP-negative Streptococcus pneumoniae. Strikingly, we found that S. aureus, and to a lesser extent E. coli but not S. pneumoniae, shaped the TRDV2 repertoire in young children (<2 years) but not in older children or adults. This dichotomy was due to the selective expansion of a fetal TRDV2 repertoire. Thus, young children possess fetal-derived Vγ9Vδ2 T cells that are highly responsive toward specific bacterial pathogens.
Collapse
Affiliation(s)
- Eric Giannoni
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Isoline Verdebout
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Moosa Rezwani
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
- Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Rahman Qazi K, Jensen GB, van der Heiden M, Björkander S, Marchini G, Jenmalm MC, Abrahamsson T, Sverremark-Ekström E. Extreme prematurity and sepsis strongly influence frequencies and functional characteristics of circulating γδ T and natural killer cells. Clin Transl Immunology 2021; 10:e1294. [PMID: 34136218 PMCID: PMC8192243 DOI: 10.1002/cti2.1294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives Extremely low gestational age neonates with extremely low birthweight (ELGAN/ELBW) are highly susceptible to infection. This is linked to their relatively immature immune system which is not yet fully compatible with an extra‐uterine environment. Here, we performed a longitudinal characterisation of unconventional T and natural killer (NK) cells in ELGAN/ELBW during their first months of life. Methods Peripheral blood mononuclear cells were collected from 97 ELGAN/ELBW at 14 and 28 days of life and at a time point corresponding to postmenstrual week 36 + 0. γδ T‐cell, NKT‐cell, mucosa‐associated invariant T‐cell and NK cell frequencies and characteristics were analysed by flow cytometry. As control, cells from 14‐day‐old full‐term (FT) infants were included. Results Extreme prematurity had significant bearing on γδ T‐cell and NK cell frequencies and characteristics. ELGAN/ELBW had significantly higher proportions of γδ T cells that were skewed towards effector and effector memory phenotypes, characteristics that were maintained throughout the study period. Expression of the gut homing receptor CCR9 was also more common in γδ T cells from ELGAN/ELBW. Conversely, NK cell frequencies were markedly lower and skewed towards a cytotoxic phenotype in the ELGAN/ELBW group at 14 days of age. Culture‐proven sepsis with an onset during the first 14 days after birth further manifested these differences in the γδ T‐ and NK cell populations at 14 days of age. Conclusion Prematurity strongly influences the levels of γδ T and NK cells, in particular in cases where sepsis debuts during the first 2 weeks of life.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Georg B Jensen
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden.,Department of Paediatrics Linköping University Linköping Sweden
| | - Marieke van der Heiden
- Department of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Giovanna Marchini
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Maria C Jenmalm
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Thomas Abrahamsson
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden.,Department of Paediatrics Linköping University Linköping Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden
| |
Collapse
|