1
|
Lin Q, Zhang C, Weng H, Lin Y, Lin Y, Ruan Z. The utility of long non-coding RNAs in chronic obstructive pulmonary disease: a comprehensive analysis. BMC Pulm Med 2023; 23:340. [PMID: 37697291 PMCID: PMC10496340 DOI: 10.1186/s12890-023-02635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is one of the main causes of morbidity and mortality in the world. However, there are some patients who are not diagnosed early and correctly through routine methods because of inconspicuous or serious symptoms. This study aims to assess the diagnostic role of long non-coding RNA (lncRNA) in COPD. METHODS We searched literature from electronic databases, after excluding non-COPD literature, the bibliometric analysis was performed, and VOSviewer software was used to represent the data analyzed. Literature evaluating the diagnostic test accuracy of lncRNA for COPD was eligible, and the QUADAS-2 checklist was used to evaluate the quality. The pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio (DOR), and summary receiver operating characteristic curve (sROC) were used to analyze the overall diagnostic performance. Subgroup and meta-regression analyses were performed to explore the heterogeneity, and a funnel plot was assessed for publication bias. Also, lncRNAs related to COPD were identified and explored for their potential biological function. RESULTS An increased annual growth rate of literature on this subject from 2016 focused on COPD, humans, RNA, and lncRNA. The meta-analysis enrolled 17 literature indicated that the SEN, SPE, and DOR differentiating COPD patients from normal controls (NCs) were 0.86 (95% CI [0.80, 0.90]), 0.78 (95% CI [0.67, 0.86]), and 21.59 (95% CI [11.39, 40.91]), respectively. Meanwhile, lncRNAs had the ability to distinguish acute exacerbations of COPD (AECOPD) patients from COPD; the SEN, SPE, and DOR were 0.75 (95% CI [0.62, 0.85]), 0.81 (95% CI [0.71, 0.89]), and 13.02 (95% CI [7.76, 21.85]), respectively. The area under the sROC were calculated to be greater than 0.8 at least. Subgroup and meta-regression analysis showed that the types of specimens and dysregulated lncRNAs might affect the diagnostic accuracy. The funnel plot showed there was a certain publication bias. 41 lncRNAs related to COPD were identified and mainly located in the nucleus and cytoplasm, associated with proliferation, invasion, and prognosis. These lncRNA-binding proteins were involved in the spliceosome, Rap1 signaling pathway, MAPK signaling pathway, and so on. CONCLUSION LncRNA suggests potential diagnostic biomarkers and therapeutic targets for COPD patients.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China.
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China.
| | - Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Yating Lin
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Yucang Lin
- Department of Information, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zhipeng Ruan
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China.
| |
Collapse
|
2
|
Liu J, Ali MK, Mao Y. Emerging role of long non-coding RNA MALAT1 related signaling pathways in the pathogenesis of lung disease. Front Cell Dev Biol 2023; 11:1149499. [PMID: 37250901 PMCID: PMC10213921 DOI: 10.3389/fcell.2023.1149499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are endogenously expressed RNAs longer than 200 nt that are not translated into proteins. In general, lncRNAs bind to mRNA, miRNA, DNA, and proteins and regulate gene expression at various cellular and molecular levels, including epigenetics, transcription, post-transcription, translation, and post-translation. LncRNAs play important roles in many biological processes, such as cell proliferation, apoptosis, cell metabolism, angiogenesis, migration, endothelial dysfunction, endothelial-mesenchymal transition, regulation of cell cycle, and cellular differentiation, and have become an important topic of study in genetic research in health and disease due to their close link with the development of various diseases. The exceptional stability, conservation, and abundance of lncRNAs in body fluids, have made them potential biomarkers for a wide range of diseases. LncRNA MALAT1 is one of the best-studied lncRNAs in the pathogenesis of various diseases, including cancers and cardiovascular diseases. A growing body of evidence suggests that aberrant expression of MALAT1 plays a key role in the pathogenesis of lung diseases, including asthma, chronic obstructive pulmonary diseases (COPD), Coronavirus Disease 2019 (COVID-19), acute respiratory distress syndrome (ARDS), lung cancers, and pulmonary hypertension through different mechanisms. Here we discuss the roles and molecular mechanisms of MALAT1 in the pathogenesis of these lung diseases.
Collapse
Affiliation(s)
- Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Md Khadem Ali
- Devission of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Yuqiang Mao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
4
|
Lai X, Zhong J, Zhang A, Zhang B, Zhu T, Liao R. Focus on long non-coding RNA MALAT1: Insights into acute and chronic lung diseases. Front Genet 2022; 13:1003964. [PMID: 36186445 PMCID: PMC9523402 DOI: 10.3389/fgene.2022.1003964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a pulmonary illness with a high burden of morbidity and mortality around the world. Chronic lung diseases also represent life-threatening situations. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a type of long non-coding RNA (lncRNA) and is highly abundant in lung tissues. MALAT1 can function as a competitive endogenous RNA (ceRNA) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). In this review, we summarized that MALAT1 mainly participates in pulmonary cell biology and lung inflammation. Therefore, MALAT1 can positively or negatively regulate ALI and chronic lung diseases (e.g., chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), pulmonary fibrosis, asthma, and pulmonary hypertension (PH)). Besides, we also found a MALAT1-miRNA-mRNA ceRNA regulatory network in acute and chronic lung diseases. Through this review, we hope to cast light on the regulatory mechanisms of MALAT1 in ALI and chronic lung disease and provide a promising approach for lung disease treatment.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Jie Zhong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Aihua Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Boyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
- *Correspondence: Tao Zhu, ; Ren Liao,
| | - Ren Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
- *Correspondence: Tao Zhu, ; Ren Liao,
| |
Collapse
|
5
|
Manevski M, Devadoss D, Long C, Singh SP, Nasser MW, Borchert GM, Nair MN, Rahman I, Sopori M, Chand HS. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol 2022; 13:803362. [PMID: 35774797 PMCID: PMC9237255 DOI: 10.3389/fimmu.2022.803362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Research Impact Cigarette smoke (CS) exposure is strongly associated with chronic obstructive pulmonary disease (COPD). In respiratory airways, CS exposure disrupts airway barrier functions, mucous/phlegm production, and basic immune responses of airway epithelial cells. Based on our recent identification of a specific immunomodulatory long noncoding RNA (lncRNA), we investigated its role in CS-induced responses in bronchial airways of cynomolgus macaque model of CS-induced COPD and in former smokers with and without COPD. The lncRNA was significantly upregulated in CS-induced macaque airways and in COPD airways that exhibited higher mucus expression and goblet cell hyperplasia. Experimental models of cells derived from COPD subjects recapitulated the augmented inflammation and mucus expression following the smoke challenge. Blocking of lncRNA expression in cell culture setting suppressed the smoke-induced and COPD-associated dysregulated mucoinflammatory response suggesting that this airway specific immunomodulatory lncRNA may represent a novel target to mitigate the smoke-mediated inflammation and mucus hyperexpression. Rationale In conducting airways, CS disrupts airway epithelial functions, mucociliary clearances, and innate immune responses that are primarily orchestrated by human bronchial epithelial cells (HBECs). Mucus hypersecretion and dysregulated immune response are the hallmarks of chronic bronchitis (CB) that is often exacerbated by CS. Notably, we recently identified a long noncoding RNA (lncRNA) antisense to ICAM-1 (LASI) that mediates airway epithelial responses. Objective To investigate the role of LASI lncRNA in CS-induced airway inflammation and mucin hyperexpression in an animal model of COPD, and in HBECs and lung tissues from former smokers with and without COPD. To interrogate LASI lncRNA role in CS-mediated airway mucoinflammatory responses by targeted gene editing. Methods Small airway tissue sections from cynomolgus macaques exposed to long-term mainstream CS, and those from former smokers with and without COPD were analyzed. The structured-illumination imaging, RNA fluorescence in-situ hybridization (FISH), and qRT-PCR were used to characterize lncRNA expression and the expression of inflammatory factors and airway mucins in a cell culture model of CS extract (CSE) exposure using HBECs from COPD (CHBEs) in comparison with cells from normal control (NHBEs) subjects. The protein levels of mucin MUC5AC, and inflammatory factors ICAM-1, and IL-6 were determined using specific ELISAs. RNA silencing was used to block LASI lncRNA expression and lentivirus encoding LASI lncRNA was used to achieve LASI overexpression (LASI-OE). Results Compared to controls, LASI lncRNA was upregulated in CS-exposed macaques and in COPD smoker airways, correlating with mucus hyperexpression and mucus cell hyperplasia in severe COPD airways. At baseline, the unstimulated CHBEs showed increased LASI lncRNA expression with higher expression of secretory mucin MUC5AC, and inflammatory factors, ICAM-1, and IL-6 compared to NHBEs. CSE exposure of CHBEs resulted in augmented inflammation and mucus expression compared to controls. While RNA silencing-mediated LASI knockdown suppressed the mucoinflammatory response, cells overexpressing LASI lncRNA showed elevated mRNA levels of inflammatory factors. Conclusions Altogether, LASI lncRNA may represent a novel target to control the smoke-mediated dysregulation in airway responses and COPD exacerbations.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Christopher Long
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Shashi P. Singh
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Glen M. Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL, United States
| | - Madhavan N. Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Mohan Sopori
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
6
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
7
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
8
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
9
|
Zhang JP, Zhang WJ, Yang M, Fang H. Propofol attenuates lung ischemia/reperfusion injury though the involvement of the MALAT1/microRNA-144/GSK3β axis. Mol Med 2021; 27:77. [PMID: 34266379 PMCID: PMC8281462 DOI: 10.1186/s10020-021-00332-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00332-0.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China.,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Wei-Jing Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China.,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China.,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China.,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550002, People's Republic of China. .,Department of Anesthesiology, Guizhou University People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, 550025, People's Republic of China. .,Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China.
| |
Collapse
|