1
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
2
|
Zhang J, Qian T, Zheng X, Qin H. Role of mir-32-3p in the diagnosis and risk assessment of osteoporotic fractures. J Orthop Surg Res 2024; 19:709. [PMID: 39487541 PMCID: PMC11531180 DOI: 10.1186/s13018-024-05206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Osteoporotic fractures (OPF) are fractures that occur with low-energy injuries or during daily activities, representing a serious consequence of osteoporosis (OP). With the worsening of population aging, the number of OPF patients continues to expand, causing a significant burden on families and society. Consequently, it is significant to diagnose and analyze OPF at the molecular level. OBJECTIVE The aim of this research was to explore the diagnostic value of miR-32-3p in OPF patients and to exploit new biomarkers for clinical applications. METHODS The miR-32-3p expression level of patients was detected by RT-qPCR. Diagnostic accuracy of miR-32-3p analyzed adopting ROC curve. Additionally, the risk factors correlation with the occurrence of OPF were assessed by logistic analysis. The effect of miR-32-3p on BMSCs was verified by in vitro transfection experiments. RESULTS miR-32-3p expression was lower in OPF patients than in OP patients. ROC curve implied that miR-32-3p exhibits commendable sensitivity (88.9%) and specificity (75.6%) to differentiate between OP and OPF patients (AUC = 0.905, P < 0.001). Furthermore, miR-32-3p was correlated with the development of OPF and was a risk factor for OPF (P < 0.001). Functional assays revealed that transfection with miR-32-3p mimic could promote proliferation and inhibit apoptosis, whereas transfection with miR-32-3p inhibitor had the opposite effect. CONCLUSION miR-32-3p demonstrates significant diagnostic potential for OPF patients. It is likely that miR-32-3p probably is a new diagnosis biomarker for OPF, offering promising therapeutic avenues through targeted interventions.
Collapse
Affiliation(s)
- Jingda Zhang
- Department of Orthopedics at North, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530022, China
| | - Tao Qian
- Department of Orthopedics, Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Xifan Zheng
- Department of Orthopedics at North, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530022, China
| | - Huiling Qin
- Department of Rehabilitation, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Baise, Guangxi Zhuang Autonomous Region, 533000, China.
| |
Collapse
|
3
|
Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, Lei S, Zhang Z, Zhang L, Wang S. Porous Collagen Sponge Loaded with Large Efficacy-Potentiated Exosome-Mimicking Nanovesicles for Diabetic Skin Wound Healing. ACS Biomater Sci Eng 2024; 10:975-986. [PMID: 38236143 DOI: 10.1021/acsbiomaterials.3c01282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Diabetic skin wounds are difficult to heal quickly due to insufficient angiogenesis and prolonged inflammation, which is an urgent clinical problem. To address this clinical problem, it becomes imperative to develop a dressing that can promote revascularization and reduce inflammation during diabetic skin healing. Herein, a multifunctional collagen dressing (CTM) was constructed by loading large efficacy-potentiated exosome-mimicking nanovesicles (L-Meseomes) into a porous collagen sponge with transglutaminase (TGase). L-Meseomes were constructed in previous research with the function of promoting cell proliferation, migration, and angiogenesis and inhibiting inflammation. CTM has a three-dimensional porous network structure with good biocompatibility, swelling properties, and degradability and could release L-Meseome slowly. In vitro experiments showed that CTM could promote the proliferation of fibroblasts and the polarization of macrophages to the anti-inflammatory phenotype. For in vivo experiments, on the 21st day after surgery, the wound healing rates of the control and CTM were 83.026 ± 4.17% and 93.12 ± 2.16%, respectively; the epidermal maturation and dermal differentiation scores in CTM were approximately four times that of the control group, and the skin epidermal thickness of the CTM group was approximately 20 μm, which was closest to that of normal rats. CTM could significantly improve wound healing in diabetic rats by promoting anti-inflammation, angiogenesis, epidermal recovery, and dermal collagen deposition. In summary, the multifunctional collagen dressing CTM could significantly promote the healing of diabetic skin wounds, which provides a new strategy for diabetic wound healing in the clinic.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinpeng Wan
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Lin Zhang
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong 250022, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Binglang Road 3#, Futian District, Shenzhen 518045, China
| |
Collapse
|
4
|
The Neuroprotection Effects of Exosome in Central Nervous System Injuries: a New Target for Therapeutic Intervention. Mol Neurobiol 2022; 59:7152-7169. [DOI: 10.1007/s12035-022-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
|
5
|
Pishavar E, Trentini M, Zanotti F, Camponogara F, Tiengo E, Zanolla I, Bonora M, Zavan B. Exosomes as Neurological Nanosized Machines. ACS NANOSCIENCE AU 2022; 2:284-296. [PMID: 37102062 PMCID: PMC10125174 DOI: 10.1021/acsnanoscienceau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In the past few decades, nanomedicine research has advanced dramatically. In spite of this, traditional nanomedicine faces major obstacles, such as blood-brain barriers, low concentrations at target sites, and rapid removal from the body. Exosomes as natural extracellular vesicles contain special bioactive molecules for cell-to-cell communications and nervous tissue function, which could overcome the challenges of nanoparticles. Most recently, microRNAs, long noncoding RNA, and circulating RNA of exosomes have been appealing because of their critical effect on the molecular pathway of target cells. In this review, we have summarized the important role of exosomes of noncoding RNAs in the occurrence of brain diseases.
Collapse
Affiliation(s)
- Elham Pishavar
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Martina Trentini
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Federica Zanotti
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Francesca Camponogara
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Elena Tiengo
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Department
of Medical Science, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Massimo Bonora
- Department
of Medical Science, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Barbara Zavan
- Department
of Translational Medicine, University of
Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Cell-Derived Exosomes as Therapeutic Strategies and Exosome-Derived microRNAs as Biomarkers for Traumatic Brain Injury. J Clin Med 2022; 11:jcm11113223. [PMID: 35683610 PMCID: PMC9181755 DOI: 10.3390/jcm11113223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex, life-threatening condition that causes mortality and disability worldwide. No effective treatment has been clinically verified to date. Achieving effective drug delivery across the blood–brain barrier (BBB) presents a major challenge to therapeutic drug development for TBI. Furthermore, the field of TBI biomarkers is rapidly developing to cope with the many aspects of TBI pathology and enhance clinical management of TBI. Exosomes (Exos) are endogenous extracellular vesicles (EVs) containing various biological materials, including lipids, proteins, microRNAs, and other nucleic acids. Compelling evidence exists that Exos, such as stem cell-derived Exos and even neuron or glial cell-derived Exos, are promising TBI treatment strategies because they pass through the BBB and have the potential to deliver molecules to target lesions. Meanwhile, Exos have decreased safety risks from intravenous injection or orthotopic transplantation of viable cells, such as microvascular occlusion or imbalanced growth of transplanted cells. These unique characteristics also create Exos contents, especially Exos-derived microRNAs, as appealing biomarkers in TBI. In this review, we explore the potential impact of cell-derived Exos and exosome-derived microRNAs on the diagnosis, therapy, and prognosis prediction of TBI. The associated challenges and opportunities are also discussed.
Collapse
|
7
|
Li H, Su Y, Wang F, Tao F. Exosomes: a new way of protecting and regenerating optic nerve after injury. Hum Cell 2022; 35:771-778. [PMID: 35258808 DOI: 10.1007/s13577-022-00688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
Abstract
As an important part of the central nervous system (CNS), the optic nerve usually cannot regenerate directly after injury. Therefore, treating the injury and restoring the function of the optic nerve are a historical problem in the medical field. Due to the special anatomical position of the optic nerve, the microenvironment needed for protection and regeneration after injury is lacking. Therefore, preventing the continued loss of neurons, protecting the functional nerves, and promoting the effective protection of nerves are the main ways to solve the problem. Exosomes are nano-sized vesicles with a diameter of 30-150 nm, composed of lipid bilayers, proteins, and genetic material. They have key functions in cell-to-cell communication, immune regulation, inflammation, and regeneration. More and more shreds of evidence show that exosomes not only play an important role in systemic diseases such as cancer, cardiovascular diseases, and brain diseases; they also play a key role in ophthalmological diseases. This article reviews the role of exosomes in the protection and regeneration of the optic nerve after optic nerve injury in related experimental studies and clinical treatment methods. GRAPHICAL ABSTARCT: .
Collapse
Affiliation(s)
- Huazhang Li
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Feng Tao
- Department of Neurology, The Hospital of Heilongjiang Province, Harbin, 150001, China.
| |
Collapse
|