1
|
Grigore A, Coman OA, Păunescu H, Costescu M, Fulga I. Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing-A Review. Int J Mol Sci 2024; 25:6753. [PMID: 38928459 PMCID: PMC11204351 DOI: 10.3390/ijms25126753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound healing involves physical, chemical and immunological processes. Transient receptor potential (TRP) and other ion channels are implicated in epidermal re-epithelization. Ion movement across ion channels can induce transmembrane potential that leads to transepithelial potential (TEP) changes. TEP is present in epidermis surrounding the lesion decreases and induces an endogenous direct current generating an epithelial electric field (EF) that could be implicated in wound re-epithelialization. TRP channels are involved in the activation of immune cells during mainly the inflammatory phase of wound healing. The aim of the study was to review the mechanisms of ion channel involvement in wound healing in in vivo experiments in murine (mice, rats) and how can this process be influenced. This review used the latest results published in scientific journals over the last year and this year to date (1 January 2023-31 December 3000) in order to include the in-press articles. Some types of TRP channels, such as TRPV1, TRPV3 and TRPA1, are expressed in immune cells and can be activated by inflammatory mediators. The most beneficial effects in wound healing are produced using agonists of TRPV1, TRPV4 and TRPA1 channels or by inhibiting with antagonists, antisense oligonucleotides or knocking down TRPV3 and TRPM8 channels.
Collapse
Affiliation(s)
| | | | - Horia Păunescu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucureșt, Romania; (A.G.); (O.A.C.); (M.C.); (I.F.)
| | | | | |
Collapse
|
2
|
Hao Y, Teng D, Mao R, Yang N, Wang J. Site Mutation Improves the Expression and Antimicrobial Properties of Fungal Defense. Antibiotics (Basel) 2023; 12:1283. [PMID: 37627703 PMCID: PMC10451632 DOI: 10.3390/antibiotics12081283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Although antimicrobial peptides (AMPs) have highly desirable intrinsic characteristics in their commercial product development as new antimicrobials, the limitations of AMPs from experimental to scale development include the low oral bioavailability, and high production costs due to inadequate in vitro/in vivo gene expression- and low scale. Plectasin has good bactericidal activity against Staphylococcus and Streptococcus, and the selective bactericidal activity greatly reduces the damage to the micro-ecosystem when applied in vivo. However, its expression level was relatively low (748.63 mg/L). In view of these situations, this study will optimize and modify the structure of Plectasin, hoping to obtain candidates with high expression, no/low toxicity, and maintain desirable antibacterial activity. Through sequence alignment, Plectasin was used as a template to introduce the degenerate bases, and the screening library was constructed. After three different levels of screening, the candidate sequence PN7 was obtained, and its total protein yield in the supernatant was 5.53 g/L, with the highest value so far for the variants or constructs from the same ancestor source. PN7 had strong activity against several species of Gram-positive bacteria (MIC value range 1~16 μg/mL). It was relatively stable in various conditions in vitro; in addition, the peptide showed no toxicity to mice for 1 week after intraperitoneal injection. Meanwhile, PN7 kills Staphylococcus aureus ATCC 43300 with a mode of a quicker (>99% S. aureus was killed within 2 h, whereas vancomycin at 2× MIC was 8 h.) and longer PAE period. The findings indicate that PN7 may be a novel promising antimicrobial agent, and this study also provides a model or an example for the design, modification, or reconstruction of novel AMPs and their derivatives.
Collapse
Affiliation(s)
- Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
3
|
Deng J, Leijten E, Nordkamp MO, Zheng G, Pouw J, Tao W, Hartgring S, Balak D, Rijken R, Huang R, Radstake T, Lu C, Pandit A. Multi-omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis. Clin Transl Med 2022; 12:e976. [PMID: 36536476 PMCID: PMC9763538 DOI: 10.1002/ctm2.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.
Collapse
Affiliation(s)
- Jingwen Deng
- Guangdong Provincial Hospital of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Emmerik Leijten
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Michel Olde Nordkamp
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Guangjuan Zheng
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Juliëtte Pouw
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Weiyang Tao
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sarita Hartgring
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Deepak Balak
- Department of DermatologyLangeLand HospitalZoetermeerThe Netherlands
| | - Rianne Rijken
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Runyue Huang
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Timothy Radstake
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Chuanjian Lu
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Aridaman Pandit
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Brzeski J, Wyrzykowski D, Chylewska A, Makowski M, Papini AM, Makowska J. Metal-Ion Interactions with Dodecapeptide Fragments of Human Cationic Antimicrobial Protein LL-37 [hCAP(134-170)]. J Phys Chem B 2022; 126:6911-6921. [PMID: 36047059 PMCID: PMC9483913 DOI: 10.1021/acs.jpcb.2c05200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 12/31/2022]
Abstract
Isothermal titration calorimetry, circular dichroism (CD) techniques, and in silico analysis were used to determine potential metal binding sites in human cationic antimicrobial protein (hCAP) corresponding to overlapping the dodecapeptide sequences of hCAP(134-170) referred to as LL-37. The correct antibacterial action of LL-37 is closely related to its established unique structure. Disturbances in the LL-37 structure (e.g., unwanted presence of metal ions) lead to a radical change in its biological functions. Five fragments of the LL-37 [hCAP(134-170)], namely, hCAP(134-145) (A1), hCAP(140-151) (A2), hCAP(146-157) (A3), hCAP(152-163) (A4), and hCAP(159-170) (A5), were taken into account and their affinity to Mn(II) and Zn(II) ions was rigorously assessed. We prove that only three of the investigated peptides (A1, A2, and A5) are capable of forming thermodynamically stable complexes with metal ions. Additionally, based on density functional theory (DFT) calculations, we propose the most likely coordination modes of metal(II) to peptides as well as discuss the chemical nature of the interactions. Finally, we present the structural features of the strongest binding peptide, hCAP(159-170), responsible for the metal binding. The presented results provide important structural and thermodynamic information to understand the influence of some metal ions on the activity of hCAP(134-170).
Collapse
Affiliation(s)
- Jakub Brzeski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15218, United States
| | - Dariusz Wyrzykowski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Chylewska
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Maria Papini
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Joanna Makowska
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Zaher H, Shawky N, Rashed LA, Elmasry MF. Estimation of tissue level of human beta-defensin 1 in vitiligo before and after narrowband ultraviolet B phototherapy: A case-control study. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:397-400. [PMID: 34907609 DOI: 10.1111/phpp.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Hesham Zaher
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nevine Shawky
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Fathy Elmasry
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Recent Advances in the Discovery and Function of Antimicrobial Molecules in Platelets. Int J Mol Sci 2021; 22:ijms221910230. [PMID: 34638568 PMCID: PMC8508203 DOI: 10.3390/ijms221910230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
The conventional function described for platelets is maintaining vascular integrity. Nevertheless, increasing evidence reveals that platelets can additionally play a crucial role in responding against microorganisms. Activated platelets release molecules with antimicrobial activity. This ability was first demonstrated in rabbit serum after coagulation and later in rabbit platelets stimulated with thrombin. Currently, multiple discoveries have allowed the identification and characterization of PMPs (platelet microbicidal proteins) and opened the way to identify kinocidins and CHDPs (cationic host defense peptides) in human platelets. These molecules are endowed with microbicidal activity through different mechanisms that broaden the platelet participation in normal and pathologic conditions. Therefore, this review aims to integrate the currently described platelet molecules with antimicrobial properties by summarizing the pathways towards their identification, characterization, and functional evaluation that have promoted new avenues for studying platelets based on kinocidins and CHDPs secretion.
Collapse
|