1
|
Yamamoto-Fukuda T, Pinto F, Pitt K, Senoo M. Inhibition of TGF-β signaling enables long-term proliferation of mouse primary epithelial stem/progenitor cells of the tympanic membrane and the middle ear mucosa. Sci Rep 2023; 13:4532. [PMID: 36941290 PMCID: PMC10027825 DOI: 10.1038/s41598-023-31246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
The surface of the middle ear is composed of the tympanic membrane (TM) and the middle ear mucosa (MEM). A number of diseases and conditions such as otitis media, middle ear cholesteatoma, and perforation of the TM have been reported to cause dysfunction of the middle ear, ultimately leading to high-frequency hearing loss. Despite its importance in repairing the damaged tissues, the stem/progenitor cells of the TM and the MEM epithelia remains largely uncharacterized due, in part, to the lack of an optimal methodology to expand and maintain stem/progenitor cells long-term. Here, we show that suppression of TGF-β signaling in a low Ca2+ condition enables long-term proliferation of p63-positive epithelial stem/progenitor cells of the TM and the MEM while avoiding their malignant transformation. Indeed, our data show that the expanded TM and MEM stem/progenitor cells respond to Ca2+ stimulation and differentiate into the mature epithelial cell lineages marked by cytokeratin (CK) 1/8/18 or Bpifa1, respectively. These results will allow us to expand epithelial stem/progenitor cells of the TM and MEM in quantity for large-scale analyses and will enhance the use of mouse models in developing stem cell-mediated therapeutic strategies for the treatment of middle ear diseases and conditions.
Collapse
Affiliation(s)
- Tomomi Yamamoto-Fukuda
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Department of Otorhinolaryngology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Filipa Pinto
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Keshia Pitt
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Makoto Senoo
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Cell Exosome Therapeutics, Inc., 2-16-9 Higashi, Shibuya-Ku, Tokyo, 150-0011, Japan.
| |
Collapse
|
2
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
3
|
Zhang C, Liu YW, Chen M, Min S, Mao J, Li Q, Chi Z. CoCl 2 -simulated hypoxia potentiates the osteogenic differentiation of fibroblasts derived from tympanosclerosis by upregulating the expression of BMP-2. Cell Biol Int 2022; 46:1423-1432. [PMID: 35811437 DOI: 10.1002/cbin.11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Tympanosclerosis (TS) is a result of long-standing middle ear inflammation characterized by fibroblasts ossification. Fibrosis is the last revertible stage in the progress of middle ear inflammation to TS. It was hypothesized that chronic hypoxia could be modulating fibrosis, which in turn additionally further aggravated hypoxia via decreasing oxygen diffusion. However, the effects of hypoxia on osteoinductive activity of fibroblasts have not been explored. Herein, we purposed to explore the role of hypoxia in osteogenic differentiation of fibroblasts derived from TS. The expression of bone morphogenetic protein-2 (BMP-2), hypoxia-inducible factor-1α (HIF-1α), and Vimentin in the human surgical specimens of tympansclerosis was investigated by immunofluorescent staining. Furthermore, cultured fibroblasts were stratified into the following study groups: control, 25, 50, and 100 μM cobaltous chloride (CoCl2 ) group. BMP-2, as well as HIF-1α levels of expression were detected via western blotting and immunofluorescence analysis. We found that the expression of BMP-2 and HIF-1α was significantly upregulated in TS tissues and these fibroblasts, which was vimentin positive surrounding sclerotic plaques, were also expressing HIF-1α positive. The results also demonstrated that CoCl2 treatment increased nuclear HIF-1α protein level in the fibroblast. Furthermore, treatment with CoCl2 significantly increased BMP-2 expression and remarkably elevated alkaline phosphatse activity and the mineralized nodules area. These data illustrate that hypoxia may play an osteogenic role in TS fibroblasts via the elevated expression of a possible osteogenic factor, BMP-2.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yang-Wenyi Liu
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Shiyao Min
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Jiabao Mao
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Qin Li
- Stomatology Department, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhangcai Chi
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| |
Collapse
|
4
|
Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q, Zhai W, Zheng J. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol 2022; 13:913718. [PMID: 35865926 PMCID: PMC9295744 DOI: 10.3389/fmicb.2022.913718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Different gut microbiota is implicated in different diseases, including cancer. However, gut microbiota differences between individuals with clear cell renal cell carcinoma (ccRCC) and healthy individuals are unclear. Here, we analyzed gut microbiota composition in 51 ccRCC patients and 40 healthy controls using 16S rRNA sequencing analysis. We observed that Blautia, Streptococcus, [Ruminococcus]_torques_group, Romboutsia, and [Eubacterium]_hallii_group were dominant and positively associated with ccRCC. We isolated and cultured Streptococcus lutetiensis to characterize specific gut microbiota that promotes ccRCC and found that it promoted in vitro ccRCC proliferation, migration, and invasion via the TGF-signaling pathway. Interactions identified between the gut microbiota and ccRCC suggest the gut microbiota could serve as a potential non-invasive tool for predicting ccRCC risk and also function as a cancer therapy target.
Collapse
Affiliation(s)
- Yang Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Ma
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunze Dong
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qian Liu,
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wei Zhai,
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Junhua Zheng,
| |
Collapse
|