1
|
Qian D, Wen J, Yuan Y, Wang L, Feng X. Sevoflurane preconditioning attenuates myocardial cell damage caused by hypoxia and reoxygenation via regulating the NORAD/miR-144-3p axis. Hum Exp Toxicol 2024; 43:9603271241297883. [PMID: 39586668 DOI: 10.1177/09603271241297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the function and mechanism of lncRNA NORAD in Sevoflurane (Sev) protection against myocardial hypoxia-reoxygenation (H/R). METHODS Preprocess rat cardiomyocytes H9c2 cells with Sev at concentrations of 0.5%, 1.0%, and 1.5%, and subjected them to H/R treatment. qRT-PCR was used to detect levels of NORAD and miR-144-3p. Measure concentrations of the inflammatory cytokines IL-6, TNF-α, and IL-10, as well as cardiac injury markers cTnI, CK-MB, and LDH using ELISA. Assess cell proliferation and apoptosis using CCK-8 and flow cytometry. Perform dual-luciferase reporter assay and RIP assay to validate the targeting relationship between NORAD and miR-144-3p. RESULTS H/R induced inhibition of cell proliferation, increase in apoptosis, and production of IL-6, TNF-α, CK-MB, LDH, and cTnI were significantly attenuated by Sev. As hypoxic treatment time lengthened, the NORAD levels in myocardial cells showed an increase, with Sev pretreatment being able to suppress the NORAD levels elevation. The overexpression of NORAD notably weakened the cardioprotective effect of Sev. NORAD targetedly binds to miR-144-3p and negatively regulates miR-144-3p. Increased miR-144-3p levels inhibited the antagonistic effect of NORAD on the cardioprotective effects of Sev. CONCLUSION The current study confirmed that sevoflurane attenuated H/R-induced cardiomyocyte injury via the NORAD/miR-144-3p axis.
Collapse
Affiliation(s)
- Duo Qian
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Wen
- Cardiology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yawei Yuan
- Department of Anesthesiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaona Feng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
Mørup N, Stakaitis R, Main AM, Golubickaite I, Hagen CP, Juul A, Almstrup K. Circulating levels and the bioactivity of miR-30b increase during pubertal progression in boys. Front Endocrinol (Lausanne) 2023; 14:1120115. [PMID: 36742409 PMCID: PMC9893272 DOI: 10.3389/fendo.2023.1120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Puberty marks the transition from childhood to adulthood and is initiated by activation of a pulsatile GnRH secretion from the hypothalamus. MKRN3 functions as a pre-pubertal break on the GnRH pulse generator and hypothalamic expression and circulating levels of MKRN3 decrease peri-pubertally. In rodents, microRNA miR-30b seems to directly target hypothalamic MKRN3 expression - and in boys, circulating levels of miR-30b-5p increase when puberty is pharmacologically induced. Similarly, miR-200b-3p and miR-155-5p have been suggested to inhibit expression of other proteins potentially involved in the regulation of GnRH secretion. Here we measure circulating levels of these three miRNAs as boys progress through puberty. MATERIALS AND METHODS Forty-six boys from the longitudinal part of the Copenhagen Puberty Study were included. All boys underwent successive clinical examinations including estimation of testis size by palpation. miR-30b-5p, miR-200b-3p, and miR-155-5p were measured in serum by RT-qPCR using a kit sensitive to the phosphorylation status of the miRNAs. Thirty-nine boys had miRNA levels measured in three consecutive samples (pre-, peri-, and post-pubertally) and seven boys had miR-30b-5p levels measured in ten consecutive samples during the pubertal transition. RESULTS When circulating levels of miR-30b-5p in pre- and peri-pubertal samples were compared with post-pubertal levels, we observed a significant increase of 2.3 and 2.2-fold (p-value<6.0×10-4), respectively, and a larger fraction of miR-30b-5p appeared to be phosphorylated post-pubertally indicating an increase in its bioactivity. We also observed a negative correlation between circulating levels of miR-30b-5p and MKRN3. The inter-individual variation in circulating miR-30b levels was substantial and we could not define a clinical threshold for miR-30b-5p suggestive of imminent puberty. Also, miR-155-5p showed significantly increasing levels from the peri- to the post-pubertal stage (p=3.0×10-3), whereas miR-200b-3p did not consistently increase. CONCLUSION Both circulating levels of miR-30b-5p and its bioactivity increase during the pubertal transition in boys supporting its role in the activation of the HPG axis at the onset of physiologically normal puberty.
Collapse
Affiliation(s)
- Nina Mørup
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Nina Mørup, ; Kristian Almstrup,
| | - Rytis Stakaitis
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ailsa Maria Main
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Golubickaite
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Casper P. Hagen
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- The Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- The International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen, Denmark
- The Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Nina Mørup, ; Kristian Almstrup,
| |
Collapse
|
3
|
Longo V, Drago G, Longo A, Ruggieri S, Sprovieri M, Cibella F, Colombo P. A multipollutant low-grade exposure regulates the expression of miR-30b, Let-7a and miR-223 in maternal sera: Evidence from the NEHO cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157051. [PMID: 35780881 DOI: 10.1016/j.scitotenv.2022.157051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
There is growing evidence that environmental pollutants can induce epigenetic modifications altering the balance of miRNAs and inducing the onset of pathological conditions in animals. In this study, we measured the serum concentration of a suite of inorganic and organic pollutants (Cu, Zn, Se, Hg, HCB, p,p'-DDE, PCBs) and their association to serum miR-30b, miR-223 and Let-7a microRNA expression in 68 healthy pregnant women from the NEHO birth cohort sited in a highly industrialized area. The effects of the pollutants on the modulation of circulating miRNAs' expression were first investigated using linear continuous regression models with a single-compound approach showing that miR-223 expression was significantly associated with serum concentration of Se and Zn (pSe = 0.0336; pZn = 0.0225) and miR-30b was associated with Hg levels (pHg = 0.019). Furthermore, when contaminants were categorized into tertiles, miR-223 and miR-30b showed a positive association with higher tertiles of Zn, p,p'-DDE (pZn = 0.023; pDDE = 0.041) and Hg (pHg = 0.008), respectively. Moreover, Let-7a expression was exclusively influenced by medium tertiles levels of Se (low vs medium tertiles, p = 0.001). Simultaneous exposure to multi-pollutant mixture was approached by WQS regression model. Statistical analysis shows a driving effect of Zn, Se, Cu, Hg and HCB on significant increased expression of Let-7a (p = 0.045). Mercury and Se significantly amplified the expression for miR-30b (p = 0.038). Differently, the combined effect of p,p'-DDE, Zn and Se decreased miR-223 expression (p = 0.0001). The documented modified expression of circulating miRNAs in the serum of pregnant women, exposed to low-medium dose contaminants mixtures offers innovative early-warning approaches to human health risk assessment.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Mario Sprovieri
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council of Italy (CNR-IAS), via del Mare 3, 91021 Torretta Granitola, Trapani, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
4
|
Cho YE, Vorn R, Chimenti M, Crouch K, Shaoshuai C, Narayanaswamy J, Harken A, Schmidt R, Gill J, Lee H. Extracellular vesicle miRNAs in breast milk of obese mothers. Front Nutr 2022; 9:976886. [PMID: 36313069 PMCID: PMC9597365 DOI: 10.3389/fnut.2022.976886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Background Breast milk has abundant extracellular vesicles (EVs) containing various biological molecules (cargo), including miRNAs. EVs are not degraded in the gastrointestinal system and circulation; thus, breast milk EVs (bEVs) are expected to interact with other organs in breastfed infants and modify the gene expression of recipient cells using miRNAs. Maternal pre-pregnancy BMI is a critical factor influencing the composition of breast milk. Thus, in mothers with obesity, miRNAs in bEVs can be altered, which might be associated with adverse health outcomes in infants. In this study, we examined 798 miRNAs to determine which miRNAs are altered in the bEVs of mothers with obesity and their potential impact on breastfed infants. Methods We recruited healthy nursing mothers who were either of normal weight (BMI < 25) or with obesity (BMI ≥ 30) based on their pre-pregnancy BMI, and delivered a singleton baby in the prior 6 months. EVs were isolated from breast milk with ultracentrifugation. bEV characteristics were examined by flow cytometry and fluorescence imaging of EV markers. A total of 798 miRNAs were screened using a NanoString human miRNA panel to find differentially expressed miRNAs in bEVs of mothers with obesity compared to mothers of normal weight. Results We included 65 nursing mothers: 47 of normal weight and 18 with obesity based on pre-pregnancy BMI. After bEV isolation, we confirmed the expression of various EV markers. Out of 37 EV markers, CD326 (EpCaM) was the most highly expressed in bEVs. The most abundant miRNAs in bEVs include miR-30b-5p, miR-4454, miR-494-3p, and let-7 miRNAs. Target genes of the top 10 miRNAs were associated with cancer, prolactin pathway, EGFR, ErbB, and FoxO signaling pathway. In bEVs of mothers with obesity, 19 miRNAs were differentially expressed (adjusted p < 0.05 cut-off), which include miR-575, miR-630, miR-642a-3p, and miR-652-5p. These miRNAs and their target genes were associated with neurological diseases and psychological disorders. Conclusion In this study, we characterized bEVs and demonstrated altered miRNAs in bEVs of mothers with obesity and identified the pathways of their potential target genes. Our findings will provide insight for future studies investigating the role of bEVs in breastfed infants.
Collapse
Affiliation(s)
- Young Eun Cho
- College of Nursing, The University of Iowa, Iowa City, IA, United States,*Correspondence: Young-Eun Cho,
| | - Rany Vorn
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Michael Chimenti
- College of Medicine The University of Iowa, Iowa City, IA, United States
| | - Keith Crouch
- College of Nursing, The University of Iowa, Iowa City, IA, United States
| | - Chen Shaoshuai
- College of Nursing, The University of Iowa, Iowa City, IA, United States
| | | | - Alaria Harken
- College of Nursing, The University of Iowa, Iowa City, IA, United States
| | - Reegan Schmidt
- College of Nursing, The University of Iowa, Iowa City, IA, United States
| | - Jessica Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States,Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hyangkyu Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, South Korea
| |
Collapse
|
5
|
Upscaling human mesenchymal stromal cell production in a novel vertical-wheel bioreactor enhances extracellular vesicle secretion and cargo profile. Bioact Mater 2022; 25:732-747. [PMID: 37056276 PMCID: PMC10087597 DOI: 10.1016/j.bioactmat.2022.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stromal cells (hMSCs) are mechanically sensitive undergoing phenotypic alterations when subjected to shear stress, cell aggregation, and substrate changes encountered in 3D dynamic bioreactor cultures. However, little is known about how bioreactor microenvironment affects the secretion and cargo profiles of hMSC-derived extracellular vesicles (EVs) including the subset, "exosomes", which contain therapeutic proteins, nucleic acids, and lipids from the parent cells. In this study, bone marrow-derived hMSCs were expanded on 3D Synthemax II microcarriers in the PBS mini 0.1L Vertical-Wheel bioreactor system under variable shear stress levels at 25, 40, and 64 RPM (0.1-0.3 dyn/cm2). The bioreactor system promotes EV secretion from hMSCs by 2.5-fold and upregulates the expression of EV biogenesis markers and glycolysis genes compared to the static 2D culture. The microRNA cargo was also altered in the EVs from bioreactor culture including the upregulation of miR-10, 19a, 19b, 21, 132, and 377. EV protein cargo was characterized by proteomics analysis, showing upregulation of metabolic, autophagy and ROS-related proteins comparing with 2D cultured EVs. In addition, the scalability of the Vertical-Wheel bioreactor system was demonstrated in a 0.5L bioreactor, showing similar or better hMSC-EV secretion and cargo content compared to the 0.1L bioreactor. This study advances our understanding of bio-manufacturing of stem cell-derived EVs for applications in cell-free therapy towards treating neurological disorders such as ischemic stroke, Alzheimer's disease, and multiple sclerosis.
Collapse
|
6
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5-year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non-canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p-STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl-xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non-coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
7
|
Circ_ROBO2/miR-186-5p/TRIM14 axis regulates oxidized low-density lipoprotein-induced cardiac microvascular endothelial cell injury. Regen Ther 2022; 20:138-146. [PMID: 35620639 PMCID: PMC9111929 DOI: 10.1016/j.reth.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background Coronary artery disease (CAD) is one of the main risks of death, which is mainly caused by coronary arteries arteriosclerosis. Circular RNAs (circRNAs) have shown important regulatory roles in cardiovascular diseases. We amid to explore the role of circ_ROBO2 in CAD. Methods Cardiac microvascular endothelial cells (CMECs) stimulated by oxidized low-density lipoprotein (ox-LDL) were served as the cellular model of CAD. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay were performed to detect RNA levels and protein levels, respectively. Cell proliferation was assessed by 5-ethynyl-2′-deoxyuridine (EdU) assay and Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was employed for measuring cell apoptosis. Matrigel tube formation assay was used to evaluate angiogenesis ability. The intermolecular interaction was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA-pull down assays. Results The expression of circ_ROBO2 was upregulated in CAD patients and ox-LDL-induced CMECs. Treatment of ox-LDL suppressed cell proliferation and angiogenic ability as well as promoted the apoptosis of CMECs partly by upregulating circ_ROBO2. MicroRNA-186-5p (miR-186-5p) was identified as a target of circ_ROBO2, and circ_ROBO2 knockdown attenuated ox-LDL-induced damage in CMECs by sponging miR-186-5p. Tripartite motif containing 14 (TRIM14) acted as a target of miR-186-5p, and TRIM14 overexpression alleviated miR-186-5p-mediated inhibitory effect on ox-LDL-induced injury in CMECs. Circ_ROBO2 positively regulated TRIM14 expression by sponging miR-186-5p. Conclusion Circ_ROBO2 played a promoting role in ox-LDL-induced CMECs injury by sponging miR-186-5p and regulating TRIM14, providing a promising treatment strategy for CAD.
Collapse
|
8
|
Wang PY, Yang S, Bao YJ. An Integrative Analysis Framework for Identifying the Prognostic Markers from Multidimensional RNA Data of Clear Cell Renal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:671-686. [PMID: 35063405 DOI: 10.1016/j.ajpath.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/13/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The altered regulatory status of long noncoding RNA (lncRNA), miRNA, and mRNA and their interactions play critical roles in tumor proliferation, metastasis, and progression, which ultimately influence cancer prognosis. However, there are limited studies of comprehensive identification of prognostic biomarkers from combined data sets of the three RNA types in the highly metastatic clear cell renal cell carcinoma (ccRCC). The current study employed an integrative analysis framework of functional genomics approaches and machine learning methods to the lncRNA, miRNA, and mRNA data and identified 16 RNAs (3 lncRNAs, 6 miRNAs, and 7 mRNAs) of prognostic value, with 9 of them novel. A 16 RNA-based score was established for prognosis prediction of ccRCC with significance (P < 0.0001). The area under the curve for the score model was 0.868 to 0.870 in the training cohort and 0.714 to 0.778 in the validation cohort. Construction of the lncRNA-miRNA-mRNA interaction network showed that the downstream mRNAs and upstream lncRNAs in the network initiated from the miRNA or lncRNA markers exhibit significant enrichment in functional classifications associated with cancer metastasis, proliferation, progression, or prognosis. The functional analysis provided clear support for the role of the RNA biomarkers in predicting cancer prognosis. This study provides promising biomarkers for predicting prognosis of ccRCC using multidimensional RNA data, and these findings are expected to facilitate potential clinical applications of the biomarkers.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Kaplan-Meier Estimate
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Prognosis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Peng-Ying Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Yun-Juan Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
9
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
10
|
Yang Z, Zhang T, Kusumanchi P, Tang Q, Sun Z, Radaeva S, Peiffer B, Shah VH, Kamath P, Gores GJ, Sanyal A, Chalasani N, Jiang Y, Huda N, Ma J, Liangpunsakul S. Transcriptomic Analysis Reveals the MicroRNAs Responsible for Liver Regeneration Associated With Mortality in Alcohol-Associated Hepatitis. Hepatology 2021; 74:2436-2451. [PMID: 34096637 PMCID: PMC8542623 DOI: 10.1002/hep.31994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS We conducted a comprehensive serum transcriptomic analysis to explore the roles of microRNAs (miRNAs) in alcohol-associated hepatitis (AH) pathogenesis and their prognostic significance. APPROACH AND RESULTS Serum miRNA profiling was performed in 15 controls, 20 heavy drinkers without liver disease, and 65 patients with AH and compared to publicly available hepatic miRNA profiling in AH patients. Among the top 26 miRNAs, expression of miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p were significantly reduced in both serum and liver of AH patients. Pathway analysis of the potential targets of these miRNAs uncovered the genes related to DNA synthesis and cell-cycle progression pathways, including ribonucleotide reductase regulatory subunit M2 (RRM2), cyclin D1 (CCND1), cyclin D2 (CCND2), MYC proto-oncogene (MYC), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1). We found a significant increase in the protein expression of RRM2, CCND1, and CCND2, but not MYC and PMAIP1, in AH patients who underwent liver transplantation; miR-26b-5p and miR-30b-5p inhibited the 3'-UTR (untranslated region) luciferase activity of RRM2 and CCND2, and miR-20a-5p reduced the 3'-UTR luciferase activity of CCND1 and CCND2. During a median follow-up of 346 days, 21% of AH patients died; these patients had higher body mass index (BMI), Model for End-Stage Liver Disease (MELD), and serum miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p than those who survived. Cox regression analysis showed that BMI, MELD score, miR-20a-5p, miR-146a-5p, and miR-26b-5p predicted mortality. CONCLUSIONS Patients with AH attempt to deal with hepatocyte injury by down-regulating specific miRNAs and up-regulating genes responsible for DNA synthesis and cell-cycle progression. Higher expression of these miRNAs, suggestive of a diminished capacity in liver regeneration, predicts short-term mortality in AH patients.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Qing Tang
- Department of Biostatistics, Indiana University, Indianapolis, IN
| | - Zhaoli Sun
- Department of Surgery, John Hopkins University, Rockville, MD
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD
| | - Brandon Peiffer
- Department of Surgery, John Hopkins University, Rockville, MD
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Patrick Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Greg J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
11
|
Galasso M, Gambino S, Romanelli MG, Donadelli M, Scupoli MT. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radic Biol Med 2021; 172:264-272. [PMID: 34129927 DOI: 10.1016/j.freeradbiomed.2021.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/17/2023]
Abstract
Aerobic organisms possess numerous antioxidant enzymatic families, including catalases, superoxide dismutases (SODs), peroxiredoxins (PRDXs), and glutathione peroxidases (GPXs), which work cooperatively to protect cells from an excess of reactive oxygen species (ROS) derived from endogenous metabolism or external microenvironment. Catalase, as well as other antioxidant enzymes, plays an important dichotomous role in cancer. Therefore, therapies aimed at either reverting the increased or further escalating catalase levels could be effective, depending on the metabolic landscape and on the redox status of cancer cells. This dichotomous role of catalase in cancers highlights the importance to deepen comprehensively the role and the regulation of this crucial antioxidant enzyme. The present review highlights the role of catalase in cancer and provides a comprehensive description of the molecular mechanisms associated with the multiple levels of catalase regulation.
Collapse
Affiliation(s)
- Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Simona Gambino
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Research Center LURM -Interdepartmental Laboratory of Medical Research, University of Verona, Verona, Italy.
| |
Collapse
|