1
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Salucci S, Burattini S, Versari I, Bavelloni A, Bavelloni F, Curzi D, Battistelli M, Gobbi P, Faenza I. Morpho-Functional Analyses Demonstrate That Tyrosol Rescues Dexamethasone-Induced Muscle Atrophy. J Funct Morphol Kinesiol 2024; 9:124. [PMID: 39051285 PMCID: PMC11270424 DOI: 10.3390/jfmk9030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Prolonged exposure to high dosages of dexamethasone, which is a synthetic glucocorticoid and a well-known anti-inflammatory drug, may lead to an increase in reactive oxygen species production, contributing to muscle wasting. The prevention of muscle atrophy by ingestion of functional foods is an attractive issue. In the last decade, natural antioxidant compounds have been increasingly investigated as promising molecules able to counteract oxidative-stress-induced muscle atrophy. Recently, we have demonstrated the antioxidant properties of two main olive oil polyphenols also known for their anticancer and anti-inflammatory activities in different cell models. Here, the preventive effect of tyrosol on dexamethasone-induced muscle atrophy has been investigated by means of morpho-functional approaches in C2C12 myotubes. Dexamethasone-treated cells showed a reduced fiber size when compared to control ones. While long and confluent myotubes could be observed in control samples, those exposed to dexamethasone appeared as immature syncytia. Dysfunctional mitochondria and the accumulation of autophagic vacuoles contributed to myotube degeneration and death. Tyrosol administration before glucocorticoid treatment prevented muscle wasting and rescued mitochondrial and lysosomal functionality. These findings demonstrate that tyrosol attenuates dexamethasone-induced myotube damage, and encourage the use of this natural molecule in preclinical and clinical studies and in synergy with other functional foods or physical activity with the aim to prevent muscle atrophy.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (M.B.); (P.G.)
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Francesco Bavelloni
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| | - Davide Curzi
- Department of Humanities, Movement, and Education Sciences, University “Niccolò Cusano”, 00166 Rome, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (M.B.); (P.G.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.B.); (M.B.); (P.G.)
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.V.); (F.B.); (I.F.)
| |
Collapse
|
3
|
Pivonello C, Patalano R, Simeoli C, Montò T, Negri M, Amatrudo F, Di Paola N, Larocca A, Crescenzo EM, Pirchio R, Solari D, de Angelis C, Auriemma RS, Cavallo LM, Colao A, Pivonello R. Circulating myomiRNAs as biomarkers in patients with Cushing's syndrome. J Endocrinol Invest 2024; 47:655-669. [PMID: 37682493 PMCID: PMC10904409 DOI: 10.1007/s40618-023-02184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Impairment of skeletal muscle mass and strength affects 40-70% of patients with active Cushing's syndrome (CS). Glucocorticoid excess sustains muscle atrophy and weakness, while muscle-specific microRNAs (myomiRs) level changes were associated with muscle organization and function perturbation. The aim of the current study is to explore changes in circulating myomiRs in CS patients compared to healthy controls and their involvement in IGFI/PI3K/Akt/mTOR pathway regulation in skeletal muscle. METHODS C2C12, mouse myocytes, were exposed to hydrocortisone (HC), and atrophy-related gene expression was investigated by RT-qPCR, WB and IF to assess HC-mediated atrophic signalling. miRNAs were evaluated in HC-treated C2C12 by PCR Arrays. MyomiRs significantly overexpressed in C2C12 were investigated in 37 CS patients and 24 healthy controls serum by RT-qPCR. The anti-anabolic role of circulating miRNAs significantly upregulated in CS patients was explored in C2C12 by investigating the IGFI/PI3K/Akt/mTOR pathway regulation. RESULTS HC induced higher expression of atrophy-related genes, miR-133a-3p, miR-122-5p and miR-200b-3p in C2C12 compared to untreated cells. Conversely, the anabolic IGFI/PI3K/Akt/mTOR signalling was reduced and this effect was mediated by miR-133a-3p. In CS patients miR-133a-3p and miR-200b-3p revealed higher circulating levels (p < 0.0001, respectively) compared to controls. ROC curves for miR-133a-3p (AUC 0.823, p < 0.0001) and miR-200b-3p (AUC 0.850, p < 0.0001) demonstrated that both myomiRs represent potential biomarkers to discriminate between CS and healthy subjects. Pearson's correlation analysis revealed that circulating levels of miR-133a-3p are directly correlated with 24 h urinary-free cortisol level (r = 0.468, p = 0.004) in CS patients. CONCLUSIONS HC induces atrophic signals by miR-133a-3p overexpression in mouse myocytes and humans. Circulating miR-133a-3p is promising biomarkers of hypercortisolism.
Collapse
Affiliation(s)
- C Pivonello
- Department of Public Health, Federico II University, Naples, Italy
| | - R Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - C Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - T Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - M Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - F Amatrudo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - N Di Paola
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - A Larocca
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - E M Crescenzo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - R Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - D Solari
- Department of Neuroscience, Division of Neurosurgery, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - C de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - R S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - L M Cavallo
- Department of Neuroscience, Division of Neurosurgery, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - R Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy.
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy.
| |
Collapse
|
4
|
Qu F, Shen X, Wang K, Sun C, Li P. Tenogenic differentiation of human tendon-derived stem cells induced by long non-coding RNA LINCMD1 via miR-342-3p/EGR1 axis. Connect Tissue Res 2023; 64:479-490. [PMID: 37287279 DOI: 10.1080/03008207.2023.2217258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Tendon-derived stem cells (TDSCs) are proposed as a potential cell-seed for the treatment of tendon injury due to their tenogenic differentiation potential. In this work, we defined the action of long non-coding RNA (lncRNA) muscle differentiation 1 (LINCMD1) in tenogenic differentiation of human TDSCs (hTDSCs). METHODS Quantitative real-time PCR (qRT-PCR) was used to assess the levels of LINCMD1, microRNA (miR)-342-3p, and early growth response-1 (EGR1) mRNA. Cell proliferation was detected by the XTT colorimetric assay. Protein expression was quantified by western blot. hTDSCs were grown in an osteogenic medium to induce osteogenic differentiation, and the extent of osteogenic differentiation was assessed by Alizarin Red Staining (ARS). The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-342-3p and LINCMD1 or EGR1. RESULTS Our results showed that enforced expression of LINCMD1 or suppression of miR-342-3p accelerated the proliferation and tenogenic differentiation and reduced osteogenic differentiation of hTDSCs. LINCMD1 regulated miR-342-3p expression by binding to miR-342-3p. EGR1 was identified as a direct and functional target of miR-342-3p, and knockdown of EGR1 reversed the effects of miR-342-3p suppression on cell proliferation and tenogenic and osteogenic differentiation. Furthermore, the miR-342-3p/EGR1 axis mediated the regulation of LINCMD1 on hTDSC proliferation and tenogenic and osteogenic differentiation. CONCLUSION Our study suggests the induction of LINCMD1 in tenogenic differentiation of hTDSCs through miR-342-3p/EGR1 axis.
Collapse
Affiliation(s)
- Feng Qu
- Department of Foot and ankle surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuezhen Shen
- Department of Orthopedics, Beijing Luhe Hospital, Affiliated to Capital Medical University, Beijing, PR China
| | - Ketao Wang
- Department of Foot and ankle surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chengyi Sun
- Department of Foot and ankle surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Pengfei Li
- Department of Foot and ankle surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy. Cells 2022; 11:cells11152291. [PMID: 35892588 PMCID: PMC9332450 DOI: 10.3390/cells11152291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
Collapse
|
6
|
Chang SY, Han SZ, Choe HM, Gao K, Jin ZY, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-320 regulates myogenesis by targeting growth factor receptor-bound protein-2 and ameliorates myotubes atrophy. Int J Biochem Cell Biol 2022; 147:106212. [PMID: 35439649 DOI: 10.1016/j.biocel.2022.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Loss of muscle mass can lead to diseases such as sarcopenia, diabetes, and obesity, which can worsen the quality of life and increase the incidence of disease. Therefore, understanding the mechanism underlying skeletal muscle differentiation is vital to prevent muscle diseases. We previously found that microRNA-320 (miR-320) is highly expressed in the lean muscle-type pigs, but its regulatory role in myogenesis remains unclear. The bioinformatics prediction indicated that miR-320 could bind to the 3 'untranslated region of growth factor receptor-bound protein-2 (Grb2). We hypothesized that miR-320 targets Grb2 to regulate myoblasts differentiation. To verify this, we transfected miR-320 mimic and inhibitor into C2C12 myoblasts to assess the role of miR-320 during myoblasts differentiation. We used real-time qPCR, luciferase reporter assays, and western blotting to confirm that miR-320 directly targets Grb2 to promote myoblasts differentiation. Moreover, by using a dexamethasone-induced atrophic model of myotubes, we discovered that miR-320 promotes the repair of damaged myotubes. Our findings expand understanding of miRNAs and genes related to regulating skeletal muscle differentiation, and provide insight into underlying therapeutic strategies for muscle diseases.
Collapse
Affiliation(s)
- Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China.
| |
Collapse
|