1
|
Omran E, Alzahrani AR, Ezzat SF, Ellithy G, Tarek M, Khairy E, Ghit MM, Elgeushy A, Ibrahim Al-Hazani TM, Aziz Ibrahim IA, Falemban AH, Bamagous GA, Elhawary NA, Jaremko M, Saied EM, Mohamed DI. Deciphering the therapeutic potential of trimetazidine in rheumatoid arthritis via targeting mi-RNA128a, TLR4 signaling pathway, and adenosine-induced FADD-microvesicular shedding: In vivo and in silico study. Front Pharmacol 2024; 15:1406939. [PMID: 38919260 PMCID: PMC11196411 DOI: 10.3389/fphar.2024.1406939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune condition characterized by chronic synovitis, joint damage, and inflammation, leading to impaired joint functionality. Existing RA treatments, although effective to some extent, are not without side effects, prompting a search for more potent therapies. Recent research has revealed the critical role of FAS-associated death domain protein (FADD) microvesicular shedding in RA pathogenesis, expanding its scope beyond apoptosis to include inflammatory and immune pathways. This study aimed to investigate the intricate relationship between mi-RNA 128a, autoimmune and inflammatory pathways, and adenosine levels in modulating FADD expression and microvesicular shedding in a Freund's complete adjuvant (FCA) induced RA rat model and further explore the antirheumatoid potency of trimetazidine (TMZ). The FCA treated model exhibited significantly elevated levels of serum fibrogenic, inflammatory, immunological and rheumatological diagnostic markers, confirming successful RA induction. Our results revealed that the FCA-induced RA model showed a significant reduction in the expression of FADD in paw tissue and increased microvesicular FADD shedding in synovial fluid, which was attributed to the significant increase in the expression of the epigenetic miRNA 128a gene in addition to the downregulation of adenosine levels. These findings were further supported by the significant activation of the TLR4/MYD88 pathway and its downstream inflammatory IkB/NFB markers. Interestingly, TMZ administration significantly improved, with a potency similar to methotrexate (MTX), the deterioration effect of FCA treatment, as evidenced by a significant attenuation of fibrogenic, inflammatory, immunological, and rheumatological markers. Our investigations indicated that TMZ uniquely acted by targeting epigenetic miRNA128a expression and elevating adenosine levels in paw tissue, leading to increased expression of FADD of paw tissue and mitigated FADD microvesicular shedding in synovial fluid. Furthermore, the group treated with TMZ showed significant downregulation of TLR4/MYD88 and their downstream TRAF6, IRAK and NF-kB. Together, our study unveils the significant potential of TMZ as an antirheumatoid candidate, offering anti-inflammatory effects through various mechanisms, including modulation of the FADD-epigenetic regulator mi-RNA 128a, adenosine levels, and the TLR4 signaling pathway in joint tissue, but also attenuation of FADD microvesicular shedding in synovial fluid. These findings further highlight the synergistic administration of TMZ and MTX as a potential approach to reduce adverse effects of MTX while improving therapeutic efficacy.
Collapse
Affiliation(s)
- Enas Omran
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar F. Ezzat
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ghada Ellithy
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Tarek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Ghit
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Elgeushy
- Orthopedic Department, Faculty of Medicine, Alazhar University Hospitals, Cairo, Egypt
| | | | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A. Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Aman RM, Zaghloul RA, Elsaed WM, Hashim IIA. In vitro-in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis. Drug Deliv Transl Res 2023; 13:2903-2929. [PMID: 37284937 PMCID: PMC10545657 DOI: 10.1007/s13346-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
Apocynin (APO), a well-known bioactive plant-based phenolic phytochemical with renowned anti-inflammatory and antioxidant pharmacological activities, has recently emerged as a specific nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase inhibitor. As far as we know, no information has been issued yet regarding its topical application as a nanostructured-based delivery system. Herein, APO-loaded Compritol® 888 ATO (lipid)/chitosan (polymer) hybrid nanoparticles (APO-loaded CPT/CS hybrid NPs) were successfully developed, characterized, and optimized, adopting a fully randomized design (32) with two independent active parameters (IAPs), namely, CPT amount (XA) and Pluronic® F-68 (PF-68) concentration (XB), at three levels. Further in vitro-ex vivo investigation of the optimized formulation was performed before its incorporation into a gel base matrix to prolong its residence time with consequent therapeutic efficacy enhancement. Subsequently, scrupulous ex vivo-in vivo evaluations of APO-hybrid NPs-based gel (containing the optimized formulation) to scout out its momentous activity as a topical nanostructured system for beneficial remedy of rheumatoid arthritis (RA) were performed. Imperatively, the results support an anticipated effectual therapeutic activity of the APO-hybrid NPs-based gel formulation against Complete Freund's Adjuvant-induced rheumatoid arthritis (CFA-induced RA) in rats. In conclusion, APO-hybrid NPs-based gel could be considered a promising topical nanostructured system to break new ground for phytopharmaceutical medical involvement in inflammatory-dependent ailments.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Randa Ahmed Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
3
|
Thabet NM, Abdel-Rafei MK, Amin MM. Fractionated whole body γ-irradiation aggravates arthritic severity via boosting NLRP3 and RANKL expression in adjuvant-induced arthritis model: the mitigative potential of ebselen. Inflammopharmacology 2023:10.1007/s10787-023-01238-5. [PMID: 37131046 DOI: 10.1007/s10787-023-01238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease associated with oxidative stress that causes excruciating pain, discomfort, and joint destruction. Ebselen (EB), a synthesized versatile organo-selenium compound, protects cells from reactive oxygen species (ROS)-induced injury by mimicking glutathione peroxidase (GPx) action. This study aimed to investigate the antioxidant and anti-inflammatory effects of EB in an arthritic irradiated model. This goal was achieved by subjecting adjuvant-induced arthritis (AIA) rats to fractionated whole body γ-irradiation (2 Gy/fraction once per week for 3 consecutive weeks, for a total dose of 6 Gy) and treating them with EB (20 mg/kg/day, p.o) or methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) as a reference anti-RA drug. The arthritic clinical signs, oxidative stress and antioxidant biomarkers, inflammatory response, expression of NOD-like receptor protein-3 (NLRP-3) inflammasome, receptor activator of nuclear factor κB ligand (RANKL), nuclear factor-κB (NF-κB), apoptotic indicators (caspase 1 and caspase 3), cartilage integrity marker (collagen-II), and histopathological examination of ankle joints were assessed. EB notably improved the severity of arthritic clinical signs, alleviated joint histopathological lesions, modulated oxidative stress and inflammation in serum and synovium, as well as reduced NLRP-3, RANKL, and caspase3 expression while boosting collagen-II expression in the ankle joints of arthritic and arthritic irradiated rats with comparable potency to MTX. Our findings suggest that EB, through its antioxidant and anti-inflammatory properties, has anti-arthritic and radioprotective properties in an arthritic irradiated model.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
4
|
Li Q, Wang P, Liu C, Liu F, Zhao H, Guo Y, Zhao G. Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo. J Mech Behav Biomed Mater 2022; 136:105494. [PMID: 36209588 DOI: 10.1016/j.jmbbm.2022.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Chongzhong Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fengyue Liu
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China.
| | - Yu Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Kiki GAÀ, Pop RM, Sabin O, Bocsan IC, Chedea VS, Socaci SA, Pârvu AE, Finsia E, Francis T, Mathieu Z, Buzoianu AD. Polyphenols from Dichrostachys cinerea Fruits Anti-Inflammatory, Analgesic, and Antioxidant Capacity in Freund’s Adjuvant-Induced Arthritic Rat Model. Molecules 2022; 27:molecules27175445. [PMID: 36080212 PMCID: PMC9457916 DOI: 10.3390/molecules27175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dichrostachys cinerea (L.) Wigth & Arn. (DC) is widely used in traditional medicine against several inflammatory diseases, especially rheumatoid arthritis, because of its antioxidant and anti-inflammatory effects. This study aimed to characterize the polyphenol-rich DC fruit extracts and investigate the analgesic, anti-inflammatory, and antioxidant effects in a rat inflammation model induced by complete Freund’s adjuvant (CFA). Water and ethanolic extracts were characterized using liquid chromatography coupled with mass spectrometry (LC-MS), Fourier-transform infrared (FTIR) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The polyphenol-rich extracts were administered in three different concentrations for 30 days. Pain threshold, thermal hyperalgesia, edema, and serum biomarkers specific to inflammatory processes or oxidative stress were evaluated. Both extracts were rich in polyphenolic compounds, mainly flavan-3-ols, proanthocyanidins, and flavone glycosides, which had important in vitro antioxidant capacity. DC fruit extracts administration had the maximum antinociceptive and anti-inflammatory effects after one day since the CFA injection and showed promising results for long-term use as well. The measurement of pro-inflammatory cytokines, cortisol, and oxidative stress parameters showed that DC extracts significantly reduced these parameters, being dose and extract-type dependent. These results showed potential anti-inflammatory, analgesic, and antioxidative properties and revealed the necessity of using a standardized polyphenolic DC extract to avoid result variability.
Collapse
Affiliation(s)
- Gisèle Atsang à Kiki
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Octavia Sabin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Egre Finsia
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Takvou Francis
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Zramah Mathieu
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Concerted regulation of OPG/RANKL/ NF‑κB/MMP-13 trajectories contribute to ameliorative capability of prodigiosin and/or low dose γ-radiation against adjuvant- induced arthritis in rats. Int Immunopharmacol 2022; 111:109068. [PMID: 35944459 DOI: 10.1016/j.intimp.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prodigiosin (PDG) is a microbial red dye with antioxidant and anti-inflammatory properties, although its effect on rheumatoid arthritis (RA) remains uncertain. Also, multiple doses of low dose γ- radiation (LDR) have been observed to be as a successful intervention for RA. Thus, the purpose of this study was to investigate the ameliorative potential of PDG and/or LDR on adjuvant-induced arthritis (AIA) in rats. METHODS The anti-inflammatory and anti-arthritic effects of PDG and/or LDR were examined in vitro and in vivo, respectively. In the AIA model, the arthritic indexes, paw swelling degrees, body weight gain, and histopathological assessment in AIA rats were assayed. The impact of PDG (200 µg/kg; p.o) and/or LDR (0.5 Gy) on the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18, IL-17A, and IL-10) as well as the regulation of osteoprotegrin (OPG)/ receptor activator of nuclear factor κB ligand (RANKL)/ nuclear factor-κB (NF-κB)/MMP-13 pathways was determined. Methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) was administered concurrently as a standard anti-arthritic drug. RESULTS PDG and/or LDR markedly diminished the arthritic indexes, paw edema, weigh loss in AIA rats, alleviated the pathological alterations in joints, reduced the levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-18, IL-17A, and RANKL in serum and synovial tissues, while increasing anti-inflammatory cytokines IL-10 and OPG levels. Moreover, PDG and/or LDR down-regulated the expression of RANKL, NF-κBp65, MMP13, caspase-3, and decreased the RANKL/OPG ratio, whereas OPG and collagen II were enhanced in synovial tissues. CONCLUSION PDG and/or LDR exhibited obvious anti-RA activity on AIA.
Collapse
|
7
|
Proteomic Analysis of the Antibacterial Effect of Improved Dian Dao San against Propionibacterium acnes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3855702. [PMID: 35186097 PMCID: PMC8849895 DOI: 10.1155/2022/3855702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/01/2022]
Abstract
Propionibacterium acnes (P. acnes) is a major pathogen of acne vulgaris. The traditional Chinese medicine (TCM) compound prescription, Dian Dao San (DDS), is effective for treating P. acnes. Previous clinical work by our team demonstrated that improved Dian Dao San (IDDS) has better antibacterial effects. However, the mechanism of IDDS inhibition of P. acnes is still unknown. Hence, the isobaric tags for relative and absolute quantitation (iTRAQ) technology was applied to explore the antibacterial mechanism of IDDS against P. acnes. Our results suggested that the antibacterial mechanism of IDDS was related to the glycolytic pathway. gap, pgk, and tpiA enzymes were found to be potential target proteins in the bacterial glycolytic pathway as an antibacterial mechanism of inhibition. In addition, SEM and TEM analyses revealed that IDDS may destruct bacterial plasma membrane and cell wall. The results provide a reliable, direct, and scientific theoretical basis for wide application of IDDS.
Collapse
|