1
|
Deng Q, Lv R, Zou H, Zou T. Beneficial effects of intermittent fasting on nonalcoholic fatty liver disease: a narrative review. EGYPTIAN LIVER JOURNAL 2024; 14:63. [DOI: 10.1186/s43066-024-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/15/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractNonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, and it is characterized by a series of fatty liver diseases that can lead to severe liver disease. Although no therapeutic drug has been approved as an effective therapy for NAFLD to date, dietary changes and physical activity are thought to be the cornerstone of NAFLD management. For this reason, some articles are available to analyze the studies done so far using various modifications of intermittent fasting (IF) among animals and patients with NAFLD. Data from preclinical and clinical trials suggested that IF positively impacts inflammatory and metabolic markers in both animals and humans. Inflammation and oxidative stress are the major risk factors involved in the pathogenesis of NAFLD. IF has been shown to have positive benefits in alleviating metabolic disorders, promoting the browning of white tissue, resetting circadian rhythm, and activating autophagy of cells. This review is intended to provide a detailed synopsis of the protocols, potential mechanisms of action, and supporting evidence for IF in NAFLD. We will highlight what is currently known about IF approaches in NAFLD treatments in clinical populations with mechanism insight from animal studies, and the safety concerns in certain patient groups.
Graphical Abstract
The protocols of intermittent fasting (IF) are various. Data from trials suggested that IF positively impacts both humans and animals. IF has been shown to have potential treatments for nonalcoholic fatty liver disease.
Collapse
|
2
|
Semenovich DS, Zorova LD, Abramicheva PA, Andrianova NV, Elchaninov AV, Petrukhina AS, Pevzner IB, Manskikh VN, Zorov DB, Plotnikov EY. Impact of Intermittent Fasting and Dietary Restriction on Redox State, Energetic Metabolism, and Liver Injury in Common Bile Duct Ligation Model. Antioxidants (Basel) 2024; 13:835. [PMID: 39061903 PMCID: PMC11273810 DOI: 10.3390/antiox13070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this work was to test whether we can treat cholestasis with dietary approaches applied after the onset of the disease. The effects of intermittent fasting and dietary restriction on liver damage caused by common bile duct ligation (BDL) in rats were studied, with particular attention paid to changes in the activity of enzymes of energy metabolism and antioxidant protection. Morphological changes in liver tissue and serum markers of liver damage were assessed in rats with BDL kept for one month on ad libitum diet, intermittent fasting, or 35% dietary restriction. We studied parameters of glucose metabolism (activity of glycolysis and gluconeogenesis enzymes), TCA cycle, and indicators of oxidative stress and redox status of the liver tissue. Dietary restriction resulted in an increase in gluconeogenesis activity, antioxidant capacity, and autophagy activation. When implemented after BDL, none of the dietary restriction protocols reduced the level of oxidative stress, detrimental morphological and biochemical alterations, or the fibrosis progression. Thus, under severe damage and oxidative stress developing in cholestasis, dietary restrictions are not hepatoprotective and can only be used in a pre-treatment mode.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- Institute for Artificial Intelligence, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey V. Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia;
| | - Aleksandra S. Petrukhina
- K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia;
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
3
|
Abuelazm MT, Mohamed I, Naeem A, Khlidj Y, Tanashat M, Katamesh BE, Abusuilik H, Altobaishat O, Abdelnabi M, Abdelazeem B. Intermittent fasting regimens for metabolic dysfunction-associated steatotic liver disease: a systematic review and network meta-analysis of randomized controlled trials. Eur J Gastroenterol Hepatol 2024; 36:371-381. [PMID: 38407890 DOI: 10.1097/meg.0000000000002715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder characterized by excessive hepatic fat accumulation. Intermittent fasting (IF) has emerged as a potential therapeutic strategy with the ability to induce weight loss, improve insulin sensitivity and reduce hepatic steatosis. We aim to compare the efficacy of different IF regimens for MASLD management. A systematic review and network meta-analysis of randomized controlled trials investigating different IF regimens for MASLD. PubMed , EMBASE , WOS , SCOPUS and Cochrane Central Register of Controlled Trials were searched until 10 April 2023. Analysis was performed using R software with the meta and netmeta packages. Mean difference (MD) was used to pool continuous outcomes with 95% confidence intervals (CIs). Our meta-analysis was registered in PROSPERO (CRD42023418467). Our meta-analysis included eight randomized controlled trials with a total of 635 participants. The 5 : 2 diet significantly improved liver stiffness (MD, -0.32; 95% CI, -0.55 to -0.09; P < 0.01). Time-restricted feeding significantly improved liver steatosis (controlled attenuation parameter score) (MD, -39.83; 95% CI, -64.78 to -14.87; P < 0.01). No significant changes were observed in asparate aminotransferase, gamma-glutamyl transpeptidase, low-density lipoproteins cholesterol, total cholesterol, triglyceride levels, basal metabolic index, blood pressure, Homeostatic Model Assessment of Insulin Resistance, fasting blood sugar, lean body mass or waist circumference across all IF regimens. However, alternate-day fasting showed positive results in anthropometric measures, including significant improvements in lean body mass, waist circumference, fat mass and weight reduction ( P < 0.05). IF regimens showed various positive effects on clinical outcomes in MASLD patients; however, these effects were not consistent. Therefore, a patient-tailored IF regimen should be considered.
Collapse
Affiliation(s)
| | - Islam Mohamed
- Department of Internal Medicine, University of Missouri, Kansas, Missouri, USA
| | - Ahmed Naeem
- Faculty of Medicine, Al-Azhar University, Asyut, Egypt
| | - Yehya Khlidj
- Faculty of Medicine, University of Algiers, Algiers, Algeria
| | | | | | | | - Obieda Altobaishat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohamed Abdelnabi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, West Virginia, USA
| |
Collapse
|
4
|
Patel S, Yan Z, Remedi MS. Intermittent fasting protects β-cell identity and function in a type-2 diabetes model. Metabolism 2024; 153:155813. [PMID: 38307325 PMCID: PMC10985623 DOI: 10.1016/j.metabol.2024.155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Type 2 diabetes (T2DM) is caused by the interaction of multiple genes and environmental factors. T2DM is characterized by hyperglycemia, insulin secretion deficiency and insulin resistance. Chronic hyperglycemia induces β-cell dysfunction, loss of β-cell mass/identity and β-cell dedifferentiation. Intermittent fasting (IF) a commonly used dietary regimen for weight-loss, also induces metabolic benefits including reduced blood glucose, improved insulin sensitivity, reduced adiposity, inflammation, oxidative-stress and increased fatty-acid oxidation; however, the mechanisms underlying these effects in pancreatic β-cells remain elusive. KK and KKAy, mouse models of polygenic T2DM spontaneously develop hyperglycemia, glucose intolerance, glucosuria, impaired insulin secretion and insulin resistance. To determine the long-term effects of IF on T2DM, 6-weeks old KK and KKAy mice were subjected to IF for 16 weeks. While KKAy mice fed ad-libitum demonstrated severe hyperglycemia (460 mg/dL) at 6 weeks of age, KK mice showed blood glucose levels of 230 mg/dL, but progressively became severely diabetic by 22-weeks. Strikingly, both KK and KKAy mice subjected to IF showed reduced blood glucose and plasma insulin levels, decreased body weight gain, reduced plasma triglycerides and cholesterol, and improved insulin sensitivity. They also demonstrated enhanced expression of the β-cell transcription factors NKX6.1, MAFA and PDX1, and decreased expression of ALDH1a3 suggesting protection from loss of β-cell identity by IF. IF normalized glucose stimulated insulin secretion in islets from KK and KKAy mice, demonstrating improved β-cell function. In addition, hepatic steatosis, gluconeogenesis and inflammation was decreased particularly in KKAy-IF mice, indicating peripheral benefits of IF. These results have important implications as an optional intervention for preservation of β-cell identity and function in T2DM.
Collapse
Affiliation(s)
- Sumit Patel
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, United States of America
| | - Zihan Yan
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, United States of America
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, United States of America; Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, United States of America; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, United States of America.
| |
Collapse
|
5
|
Haif SK, Al Kury LT, Talib WH. Combination of Thymoquinone and Intermittent Fasting as a Treatment for Breast Cancer Implanted in Mice. PLANTS (BASEL, SWITZERLAND) 2023; 13:35. [PMID: 38202341 PMCID: PMC10780740 DOI: 10.3390/plants13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Breast cancer stands out as a particularly challenging form of cancer to treat among various types. Traditional treatment methods have been longstanding approaches, yet their efficacy has diminished over time owing to heightened toxicity, adverse effects, and the emergence of multi-drug resistance. Nevertheless, a viable solution has emerged through the adoption of a complementary treatment strategy utilizing natural substances and the incorporation of intermittent fasting to enhance therapeutic outcomes. This study aimed to assess the anticancer activity of thymoquinone (TQ), intermittent fasting, and their combination using in vivo and in vitro methods. The anti-proliferative activity of TQ and fasting (glucose/serum restriction) were evaluated against the T47D, MDA-MB-231, and EMT6 cell lines and compared to normal cell lines (Vero) using the MTT colorimetric assay method. Additionally, this study aimed to determine the half-maximal inhibitory concentration (IC50) of TQ. For the in vivo experiment, the antitumor activity of TQ and intermittent fasting (IF) was assessed by measuring the tumor sizes using a digital caliper to determine the change in the tumor size and survival rates. At the molecular level, the serum levels of glucose, β-hydroxybutyrate (β-HB), leptin, and insulin growth factor-1 (IGF-1) were measured using standard kits. Additionally, the aspartate transaminase (AST), alanine transaminase (ALT), and creatinine serum levels were measured. The inhibition of the breast cancer cell lines was achieved by TQ. TQ and intermittent fasting both had an additional anticancer effect against breast tumors inoculated in mice. The combination therapy was evaluated and found to significantly reduce the tumor size, with a change in tumor size of -57.7%. Additionally, the combination of TQ and IF led to a decrease in the serum levels of glucose, IGF-1 (24.49 ng/mL) and leptin (1.77 ng/mL) while increasing β-hydroxybutyrate in the mice given combination therapy (200.86 nM) with no toxicity on the liver or kidneys. In the mice receiving combination therapy, TQ and IF treated breast cancer in an additive way without causing liver or kidney toxicity due to decreased levels of glucose, IGF-1, and leptin and increased levels of β-hydroxybutyrate. Further investigation is required to optimize the doses and determine the other possible mechanisms exhibited by the novel combination.
Collapse
Affiliation(s)
- Shatha Khaled Haif
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan;
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931-166, Jordan
| |
Collapse
|
6
|
Palma J, Maciejewska-Markiewicz D, Zgutka K, D Piotrowska K, Skonieczna-Żydecka K, Stachowska E. The analysis of fatty acids and their derivatives in the liver of C57BL/6 mice with long-term caloric restrictions. Prostaglandins Other Lipid Mediat 2023; 169:106764. [PMID: 37459907 DOI: 10.1016/j.prostaglandins.2023.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Caloric restriction (CR) is a dietetic intervention based on the reduction of daily calorie intake by 10-30 %. When subjected to CR, the organism adjusts its metabolism to the changing availability of key nutrients. However, fatty acids' content in organisms subjected to long-term CR has not been evaluated. The aim of the research was to analyze the influence of long-term CR on the contents of medium- and long-chain fatty acids, as well as on the contents of fatty acid derivatives in liver. The study was performed on C57BL female (n = 12) and male (n = 12) mice subjected to lifelong 30 % calorie restriction. Fatty acids were analyzed using gas chromatography, while fatty acid derivatives were analyzed with liquid chromatography. The dynamics of change of the lipid profile of the labeled fatty acids observed in the liver tissue confirms that lipolysis actively takes place in this organ when hungry. Moreover, it is highly possible that de novo synthesis of acids takes place, with the aim to ensure energy substrates to the body. Moreover, an increase of concentration was observed for fatty acid derivatives, those with anti-inflammatory properties (resolvin, LTX A4). However, there was no increase in the concentration of pro-inflammatory eicosanoids. The results suggest that it is important to take into consideration the introduction of appropriate supplements when using CR.
Collapse
Affiliation(s)
- J Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - D Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - K Zgutka
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 54, 71-210 Szczecin, Poland
| | - K D Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - K Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - E Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| |
Collapse
|
7
|
Abstract
Experimental trials in organisms ranging from yeast to humans have shown that various forms of reducing food intake (caloric restriction) appear to increase both overall and healthy lifespan, delaying the onset of disease and slowing the progression of biomarkers of aging. The gut microbiota is considered one of the key environmental factors strongly contributing to the regulation of host health. Perturbations in the composition and activity of the gut microbiome are thought to be involved in the emergence of multiple diseases. Indeed, many studies investigating gut microbiota have been performed and have shown strong associations between specific microorganisms and metabolic diseases including overweight, obesity, and type 2 diabetes mellitus as well as specific gastrointestinal disorders, neurodegenerative diseases, and even cancer. Dietary interventions known to reduce inflammation and improve metabolic health are potentiated by prior fasting. Inversely, birth weight differential host oxidative phosphorylation response to fasting implies epigenetic control of some of its effector pathways. There is substantial evidence for the efficacy of fasting in improving insulin signaling and blood glucose control, and in reducing inflammation, conditions for which, additionally, the gut microbiota has been identified as a site of both risk and protective factors. Accordingly, human gut microbiota, both in symbiont and pathobiont roles, have been proposed to impact and mediate some health benefits of fasting and could potentially affect many of these diseases. While results from small-N studies diverge, fasting consistently enriches widely recognized anti-inflammatory gut commensals such as Faecalibacterium and other short-chain fatty acid producers, which likely mediates some of its health effects through immune system and barrier function impact.
Collapse
Affiliation(s)
- Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
8
|
Roberts JL, Golloshi M, Harding DB, Conduah M, Liu G, Drissi H. Bifidobacterium longum supplementation improves age-related delays in fracture repair. Aging Cell 2023; 22:e13786. [PMID: 36704918 PMCID: PMC10086533 DOI: 10.1111/acel.13786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Age-related delays in bone repair remains an important clinical issue that can prolong pain and suffering. It is now well established that inflammation increases with aging and that this exacerbated inflammatory response can influence skeletal regeneration. Recently, simple dietary supplementation with beneficial probiotic bacteria has been shown to influence fracture repair in young mice. However, the contribution of the gut microbiota to age-related impairments in fracture healing remains unknown. Here, we sought to determine whether supplementation with a single beneficial probiotic species, Bifidobacterium longum (B. longum), would promote fracture repair in aged (18-month-old) female mice. We found that B. longum supplementation accelerated bony callus formation which improved mechanical properties of the fractured limb. We attribute these pro-regenerative effects of B. longum to preservation of intestinal barrier, dampened systemic inflammation, and maintenance of the microbiota community structure. Moreover, B. longum attenuated many of the fracture-induced systemic pathologies. Our study provides evidence that targeting the gut microbiota using simple dietary approaches can improve fracture healing outcomes and minimize systemic pathologies in the context of aging.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Mateo Golloshi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Derek B Harding
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Madison Conduah
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Guanglu Liu
- Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Health Care System, Decatur, Georgia, USA
| |
Collapse
|
9
|
YAP regulates the liver size during the fasting-refeeding transition in mice. Acta Pharm Sin B 2022; 13:1588-1599. [PMID: 37139422 PMCID: PMC10149903 DOI: 10.1016/j.apsb.2022.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 03/09/2023] Open
Abstract
Liver is the central hub regulating energy metabolism during feeding-fasting transition. Evidence suggests that fasting and refeeding induce dynamic changes in liver size, but the underlying mechanisms remain unclear. Yes-associated protein (YAP) is a key regulator of organ size. This study aims to explore the role of YAP in fasting- and refeeding-induced changes in liver size. Here, fasting significantly reduced liver size, which was recovered to the normal level after refeeding. Moreover, hepatocyte size was decreased and hepatocyte proliferation was inhibited after fasting. Conversely, refeeding promoted hepatocyte enlargement and proliferation compared to fasted state. Mechanistically, fasting or refeeding regulated the expression of YAP and its downstream targets, as well as the proliferation-related protein cyclin D1 (CCND1). Furthermore, fasting significantly reduced the liver size in AAV-control mice, which was mitigated in AAV Yap (5SA) mice. Yap overexpression also prevented the effect of fasting on hepatocyte size and proliferation. Besides, the recovery of liver size after refeeding was delayed in AAV Yap shRNA mice. Yap knockdown attenuated refeeding-induced hepatocyte enlargement and proliferation. In summary, this study demonstrated that YAP plays an important role in dynamic changes of liver size during fasting-refeeding transition, which provides new evidence for YAP in regulating liver size under energy stress.
Collapse
|
10
|
Mice blocking Ser347 phosphorylation of pregnane x receptor develop hepatic fasting-induced steatosis and hypertriglyceridemia. Biochem Biophys Res Commun 2022; 615:75-80. [PMID: 35609418 PMCID: PMC9233068 DOI: 10.1016/j.bbrc.2022.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Nuclear receptor Pregnane X Receptor (PXR; NR1I2) has transcriptional regulation functions for energy homeostasis in the liver. Mouse PXR has a conserved phosphorylation motif at serine 347 (serine 350 in humans) within the ligand-binding domain. PXR phosphorylated at this motif is expressed in mouse livers in response to fasting. Mice with a PXR∗Ser347Ala knockin mutation (PXR KI) were generated to block phosphorylation, and utilized to investigate the role of Ser347 phosphorylation in vivo. PXR KI mice had decreased body weight at 8-weeks of age and had much greater weight loss after fasting compared with PXR WT mice. The cDNA microarray analysis of hepatic mRNAs showed that cell death or apoptotic signaling was induced in fasting PXR KI mice. Moreover, increasing hepatic lipids, triglycerides and the development of hypertriglyceridemia were observed in fasting PXR KI mice. These findings are indicative that blocking phosphorylation prevents mice from maintaining hepatic energy homeostasis. Thus, phosphorylated PXR may be an essential factor to prevent the liver from developing damage caused by fasting.
Collapse
|
11
|
Ceylani T, Teker HT, Samgane G, Gurbanov R. Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms. Anal Biochem 2022; 654:114825. [DOI: 10.1016/j.ab.2022.114825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022]
|
12
|
Ismail NA, Pramaningtyas MD, Nurmasitoh T. Islamic Fasting Models but not Only Ramadan Improved Metabolic Parameter in High-Fat-High-Fructose-Induced Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Various types of Islamic fasting, apart from Ramadan fasting, have not been studied for their effects on health and metabolic processes.
AIM: This study aimed to evaluate the effect of models of Ramadan, Dawood, and Monday-Thursday fasting on metabolic parameters in high-fat-high-fructose (HFHF)-induced rats.
METHODS: Wistar rats were subjected to normal diet control, HFHF diet alone, and modeling Islamic fastings such as Ramadan, Dawood, and Monday-Thursday fasting models, within a period of 29 days at night that HFHF previously induced for 2 weeks. Serum lipid profile, glucose, uric acid, aspartate transaminase (AST) and alanine transaminase (ALT) for liver function, and urea and creatinine for kidney function were assessed after HFHF induction (pre-test) and after fasting treatment (post-test).
RESULTS: HFHF administration for 2 weeks caused dyslipidemia and increased urea levels significantly. However, other parameters were impaired but not statistically significant. Islamic fasting models demonstrated a significantly improved lipid profile. However, glucose, uric acid, AST, ALT, urea, and creatinine improved after fasting treatment but were not statistically significant.
CONCLUSION: Islamic fasting models have a beneficial effect on improving metabolic parameters. Both Dawood and Monday-Thursday fastings can be considered to promote health and improve metabolic processes as well as Ramadan fasting.
Collapse
|
13
|
Hsu AKW, Roman SS, Bagatini MD, Marafon F, do Nascimento Junior P, Modolo NSP. Intermittent Fasting before Laparotomy: Effects on Glucose Control and Histopathologic Findings in Diabetic Rats. Nutrients 2021; 13:nu13124519. [PMID: 34960070 PMCID: PMC8708415 DOI: 10.3390/nu13124519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Intermittent fasting is a nutrition practice in which individuals fast for several hours in a day, mainly with feeding time during the daylight hours. They seek to improve metabolic performance and cellular resistance to stress. In this study, we tested the fasting protocol to investigate the glycemic effect in a laparotomy perioperative period in diabetic rats and histopathologic findings. (2) Methods: The animals were diabetic-induced with alloxan. Two groups were set according to the feeding protocol: free food and intermittent fasting, whose rats could only eat 8 h in the daylight. Both groups were anesthetized, and a laparotomy was performed. We evaluated the glucose levels during the perioperative period, and we accessed organ histology seeking damage of kidney, bowel and liver after surgical trauma, and we evaluated the wound healing process. (3) Results: Glycemic levels were improved in the intermittent fasting group, especially in the post-operative period after laparotomy. Comparing both groups' tubular damage showed interdependency with mice with worse glycemic level (Z = 2.3; p = 0.0215) and wound-healing parameters showed interdependency with rats with better glycemic status for neovascularization (Z = 2.2; p = 0.0273) and the presence of sebaceous and sweat gland in the healing process (Z = 2.30; p = 0.0215). (4) Conclusions: Intermittent fasting before surgery can be a tool to improve glycemic levels in diabetic rats, with improvement especially in the post-operative period.
Collapse
Affiliation(s)
- André Keng Wei Hsu
- Anesthesia Department, São Paulo State University (UNESP)-Botucatu, Botucatu 18618683, Brazil; (P.d.N.J.); (N.S.P.M.)
- Pharmacology and Histology Department, Medical School, Integrated Regional University (URI), Erechim 99709910, Brazil;
- Correspondence:
| | - Silvane Souza Roman
- Pharmacology and Histology Department, Medical School, Integrated Regional University (URI), Erechim 99709910, Brazil;
| | - Margarete Dulce Bagatini
- Academic Coordination, Biomedical Sciencies Department, Federal University of Fronteira Sul, Chapecó 89802210, Brazil;
| | - Filomena Marafon
- Postgraduate Program in Biochemistry Department, Federal University of Santa Catarina, Florianopolis 88040900, Brazil;
| | - Paulo do Nascimento Junior
- Anesthesia Department, São Paulo State University (UNESP)-Botucatu, Botucatu 18618683, Brazil; (P.d.N.J.); (N.S.P.M.)
| | - Norma Sueli Pinheiro Modolo
- Anesthesia Department, São Paulo State University (UNESP)-Botucatu, Botucatu 18618683, Brazil; (P.d.N.J.); (N.S.P.M.)
| |
Collapse
|