1
|
Wan T, Shi W, Liang R, Li T, Li B, Zhou X. VEGFA may be a potential marker of myopic choroidal thickness and vascular density changes. Sci Rep 2024; 14:20514. [PMID: 39227639 PMCID: PMC11372119 DOI: 10.1038/s41598-024-70616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
To evaluate the changes of choroidal thickness (CT) and blood flow related to myopia, and its effects of vascular endothelial growth factor (VEGFA) on choroidal vessels in myopia. Subjects were included and divided into emmetropia (EM), non-high myopia (Non-HM) and high myopia (HM) groups. we measured choroidal thickness (CT), choriocapillaris vessel density (VD), and VEGFA content in tears in humans (137 subjects for CT, VD and 84 for tear) and detected the role of VEGFA in the choroid in form-deprivation myopia (FDM) in guinea pigs. Twenty-four guinea pigs were divided into control and FDM groups, and the expression changes of choroidal vessels and VEGFA were observed and compared using immunohistochemistry and Western blotting. Twenty-one guinea pigs were divided into control, FDM + Vehicle and FDM + Conbercept groups. The changes of diopter, axis length and choroidal vessels after intravitreal injection of Conbercept were observed. There were significant differences in CT and VD among the three groups (p < 0.05). VEGFA levels in tears were significantly lower in the myopic groups, with a decreasing trend from EM to Non-HM to HM. The choroidal vascular area fraction of FDM decreased compared to the control group. FDM guinea pigs exhibited reduced choroidal vasculature and significant downregulation of VEGFA expression. Following intravitreal injection of conbercept, the FDM + Conbercept group showed greater myopia, longer axial length, and lower choroidal vascular area fraction compared to the control group. VEGFA may participate in the regulation of choroidal blood vessels and blood flow in the progression of myopia. The reduction in VEGFA may accelerates the progression of myopia.
Collapse
Affiliation(s)
- Ting Wan
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
- Department of Ophthalmology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200437, China
| | - Wenqing Shi
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Rongbin Liang
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Bing Li
- Department of Central Laboratory, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
2
|
Yen CY, Chiu CM, Fang IM. MicroRNA expression profiling in tears and blood as predictive biomarkers for anti-VEGF treatment response in wet age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2024; 262:2875-2884. [PMID: 38581435 DOI: 10.1007/s00417-024-06478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
PURPOSE This study aimed to investigate the potential of microRNAs (miRNAs) in tears, blood, and aqueous humor as biomarkers for predicting treatment response in wet age-related macular degeneration (AMD) patients undergoing anti-vascular endothelial growth factor (anti-VEGF) therapy. METHODS In a single-center prospective cohort study, treatment-naïve wet AMD patients and age-matched controls were enrolled. Clinical data and miRNA levels (miR-199a-3p, miR-365-3p, miR-200b-3p, miR-195-5p, miR-335-5p, and miR-185-5p) in tears, blood, and aqueous humor were collected. Treatment response was categorized into responders and non-responders based on visual acuity and central subfield thickness. MiRNA levels were quantified using reverse-transcription PCR. Statistical analyses were performed, including ROC analysis, to evaluate predictive accuracy. RESULTS Dysregulated miRNA profiles were observed in wet AMD tears and blood compared to controls. Specifically, miR-199a-3p, miR-195-5p, and miR-185-5p were upregulated, while miR-200b-3p was downregulated in tears. All six miRNAs were elevated in wet AMD blood samples. Notably, responders showed higher tear expression of miR-195-5p and miR-185-5p. Combining these miRNAs yielded the highest predictive power (AUC = 0.878, p = 0.006) for anti-VEGF responders. CONCLUSIONS Dysregulated miRNA profiles in tears and blood suggest their potential as biomarkers for wet AMD. MiR-195-5p and miR-185-5p in tears demonstrate predictive value for anti-VEGF treatment responders. This study underscores the non-invasive prediction potential of miRNA tear analysis in wet AMD treatment responses.
Collapse
Affiliation(s)
- Chu-Yu Yen
- Department of Ophthalmology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chi-Ming Chiu
- Department of Biotechnology, Ming Chuan University, Taoyuan City, Taiwan
| | - I-Mo Fang
- Department of Ophthalmology, Taipei City Hospital, Zhongxiao Branch, No. 87, Tonde Road, Nankang District, Taipei, Taiwan.
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Special Education, University of Taipei, Taipei, Taiwan.
- Department of Optometry, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Fu W, Ye Y, Hu F. LncRNA XIST promotes neovascularization in diabetic retinopathy by regulating miR-101-3p/VEGFA. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230097. [PMID: 38739522 PMCID: PMC11156180 DOI: 10.20945/2359-4292-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/04/2023] [Indexed: 05/16/2024]
Abstract
Objective This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.
Collapse
Affiliation(s)
- Weina Fu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China,
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China
| | - Feng Hu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
4
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
5
|
Bian J, Ge W, Jiang Z. miR-26a-5p Attenuates Oxidative Stress and Inflammation in Diabetic Retinopathy through the USP14/NF- κB Signaling Pathway. J Ophthalmol 2024; 2024:1470898. [PMID: 38282961 PMCID: PMC10817816 DOI: 10.1155/2024/1470898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose Diabetic retinopathy (DR) is an ocular disease caused by diabetes and may lead to vision impairment and even blindness. Oxidative stress and inflammation are two key pathogenic factors of DR. Recently, regulatory roles of different microRNAs (miRNAs) in DR have been widely verified. miR-26a-5p has been confirmed to be a potential biomarker of DR. Nevertheless, the specific functions of miR-26a-5p in DR are still unclear. Methods Primary cultured mouse retinal Müller cells in exposure to high glucose (HG) were used to establish an in vitro DR model. Müller cells were identified via morphology observation under phase contrast microscope and fluorescence staining for glutamine synthetase. The in vivo animal models for DR were constructed using streptozotocin-induced diabetic C57BL/6 mice. Western blotting was performed to quantify cytochrome c protein level in the cytoplasm and mitochondria of Müller cells and to measure protein levels of glial fibrillary acidic protein (GFAP), ubiquitin-specific peptidase 14 (USP14), as well as factors associated with NF-κB signaling (p-IκBα, IκBα, p-p65, and p65) in Müller cells or murine retinal tissues. ROS production was detected by CM-H2DCFDA staining, and the concentration of oxidative stress markers (MDA, SOD, and CAT) was estimated by using corresponding commercial kits. Quantification of mRNA expression was conducted by RT-qPCR analysis. The concentration of proinflammatory factors (TNF-α, IL-1β, and IL-6) was evaluated by ELISA. Hematoxylin-eosin staining for murine retinal tissues was performed for histopathological analysis. Immunofluorescence staining was conducted to determine NF-κB p65 nuclear translocation in Müller cells. Furthermore, the interaction between miR-26a-5p and USP14 was verified via the luciferase reporter assays. Results HG stimulation contributed to Müller cell dysfunction by inducing inflammation, oxidative injury, and mitochondrial damage to Müller cells. miR-26a-5p was downregulated in Müller cells under HG condition, and overexpression of miR-26a-5p relieved HG-induced Müller cell dysfunction. Moreover, miR-26a-5p targeted USP14 and inversely regulated USP14 expression. Additionally, HG-evoked activation of NF-κB signaling was suppressed by USP14 knockdown or miR-26a-5p upregulation. Rescue assays showed that the protective impact of miR-26a-5p upregulation against HG-induced Müller cell dysfunction was reversed by USP14 overexpression. Furthermore, USP14 upregulation and activation of NF-κB signaling in the retinas of DR mice were detected in animal experiments. Injection with miR-26a-5p agomir improved retinal histopathological injury and weakened the concentration of proinflammatory cytokines and oxidative stress markers in the retinas of DR mice. Conclusion miR-26a-5p inhibits oxidative stress and inflammation in DR progression by targeting USP14 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Bian
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Weizhong Ge
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Zhengmei Jiang
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| |
Collapse
|
6
|
Xue L, Hu M, Zhu Q, Li Y, Zhou G, Zhang X, Zhou Y, Zhang J, Ding P. GRg1 inhibits the TLR4/NF-kB signaling pathway by upregulating miR-216a-5p to reduce growth factors and inflammatory cytokines in DR. Mol Biol Rep 2023; 50:9379-9394. [PMID: 37819496 PMCID: PMC10635910 DOI: 10.1007/s11033-023-08895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common diabetic neurodegenerative disease that affects vision in severe cases. Current therapeutic drugs are ineffective for some patients with severe side effects, and ginsenoside-Rg1 (GRg1) has been shown to protect against DR and may serve as a new potential drug for DR. This study aimed to confirm the protective effect of GRg1 against DR and its molecular mechanism. METHODS Human retinal microvascular endothelial cells (hRMECs) and rats were used to construct DR models in vitro and in vivo. Cell proliferation was detected by BrdU assays, the cell cycle was detected by flow cytometry, and TNF-α, IL-6 and IL-1β levels were detected by ELISA. qRT‒PCR, Western blotting and immunohistochemistry were used to detect the expression of related genes and proteins, and angiogenesis assays were used to assess angiogenesis. RIP and RNA pull down assays were used to determine the relationship between miR-216a-5p and TLR4; retinal structure and changes were observed by HE staining and retinal digestive spread assays. RESULTS GRg1 effectively inhibited HG-induced hRMEC proliferation, cell cycle progression and angiogenesis and reduced the levels of intracellular inflammatory cytokines and growth factors. HG downregulated the expression of miR-216a-5p and upregulated the expression of TLR4/NF-kB signaling pathway-related proteins. Importantly, GRg1 inhibited TLR4/NF-kB signaling pathway activation by upregulating miR-216a-5p, thereby inhibiting HG-induced cell proliferation, cell cycle progression, angiogenesis, and the production of inflammatory cytokines and growth factors. In addition, animal experiments confirmed the results of the cell experiments. CONCLUSIONS GRg1 inhibits TLR4/NF-kB signaling by upregulating miR-216a-5p to reduce growth factors and inflammatory cytokines in DR, providing a potential therapeutic strategy for DR.
Collapse
Affiliation(s)
- Liping Xue
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Min Hu
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Qin Zhu
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Yadi Li
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Guanglong Zhou
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Xiaofan Zhang
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Yuan Zhou
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Jieying Zhang
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Peng Ding
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
7
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Wong WKM, Polkamp M, Farr RJ, Kunte PS, Hardikar HP, Yajnik CS, Hardikar AA, Joglekar MV. MicroRNA Profiling from Tears as a Potential Non-invasive Method for Early Detection of Diabetic Retinopathy. Methods Mol Biol 2023; 2678:117-134. [PMID: 37326708 DOI: 10.1007/978-1-0716-3255-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diabetic retinopathy (DR) is a vascular complication of diabetes that can lead to partial or complete loss of vision. Early detection and treatment of DR can prevent blindness. Regular clinical examination is recommended for DR diagnosis; however, it is not always possible or feasible due to limited resources, expertise, time, and infrastructure. Several clinical and molecular biomarkers are proposed for the prediction of DR including microRNAs. MicroRNAs are a class of small non-coding RNAs that are found in biofluids and can be measured using reliable and sensitive methods. The most commonly used biofluid for microRNA profiling is plasma or serum; however, tear fluid (tears) is also demonstrated to contain microRNAs. MicroRNAs isolated from tears present a non-invasive source for DR detection. Different methods of microRNA profiling are available including digital PCR-based methods that can detect up to a single copy of microRNA in the biofluids. Here, we describe microRNA isolation from tears using manual method as well as using a high-throughput automated platform followed by microRNA profiling using digital PCR system.
Collapse
Affiliation(s)
- Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Mya Polkamp
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ryan J Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Health and Biosecurity (H&B) at the Australian Centre for Disease Preparedness (ACDP), CSIRO, Geelong, VIC, Australia
| | - Pooja S Kunte
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Diabetes Unit, KEM Hospital and Research Centre, Pune, India
| | - Hrishikesh P Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
9
|
Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022). Biomolecules 2022; 12:biom12121774. [PMID: 36551201 PMCID: PMC9775338 DOI: 10.3390/biom12121774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. It is also the main cause of blindness caused by multicellular damage involving retinal endothelial cells, ganglial cells, and pigment epithelial cells in adults worldwide. Currently available drugs for DR do not meet the clinical needs; thus, new therapeutic targets are warranted. Noncoding RNAs (ncRNAs), a new type of biomarkers, have attracted increased attention in recent years owing to their crucial role in the occurrence and development of DR. NcRNAs mainly include microRNAs, long noncoding RNAs, and circular RNAs, all of which regulate gene and protein expression, as well as multiple biological processes in DR. NcRNAs, can regulate the damage caused by various retinal cells; abnormal changes in the aqueous humor, exosomes, blood, tears, and the formation of new blood vessels. This study reviews the different sources of the three ncRNAs-microRNAs, long noncoding RNAs, and circular RNAs-involved in the pathogenesis of DR and the related drug development progress. Overall, this review improves our understanding of the role of ncRNAs in various retinal cells and offers therapeutic directions and targets for DR treatment.
Collapse
|