1
|
Li Y, Sun M, Tian X, Bao T, Yu Q, Ma NL, Gan R, Cheang WS, Wu X. Gymnemic acid alleviates gut barrier disruption and lipid dysmetabolism via regulating gut microbiota in HFD hamsters. J Nutr Biochem 2024; 133:109709. [PMID: 39053860 DOI: 10.1016/j.jnutbio.2024.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Gut microbiota dysbiosis and gut barrier disruption are key events associated with high-fat diet (HFD)-induced systemic metabolic disorders. Gymnemic acid (GA) has been reported to have an important role in alleviating HFD-induced disorders of glycolipid metabolism, but its regulatory role in HFD-induced disorders of the gut microbiota and gut barrier function has not been elucidated. Here we showed that GA intervention in HFD-induced hamsters increased the relative abundance of short-chain fatty acid (SCFA)-producing microbes including Lactobacillus (P<.05) and Lachnoclostridium (P<.01) in the gut, and reduced the relative abundance of lipopolysaccharide (LPS)-producing microbes including Enterococcus (P<.05) and Bacteroides (P<.05), subsequently improving HFD-induced intestinal barrier dysfunction and systemic inflammation. Specifically, GA intervention reduced mRNA expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α (P<.01), increased mRNA expression of antioxidant-related genes, including Nfe2l2, Ho-1, and Nqo1 (P<.01), and increased mRNA expression of intestinal tight junction proteins, including Occludin and Claudin-1 (P<.01), thereby improving gut barrier function of HFD hamsters. This ameliorative effect of GA on the gut of HFD hamsters may further promote lipid metabolic balance in liver and adipose tissue by regulating the Toll-like receptor 4 (TLR4)-nuclear factor-κB (NF-κB) signaling pathway. Taken together, these results systematically revealed the important role of GA in regulating HFD-induced gut microbiota disturbance and gut barrier function impairment, providing a potential clinical theoretical basis for targeted treatment of HFD-induced microbiota dysbiosis.
Collapse
Affiliation(s)
- Yumeng Li
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Mingzhe Sun
- Air Force Medical Center of People's Liberation Army, Beijing, China; College of food science & nutritional engineering, China Agricultural University, Beijing, China
| | - Xutong Tian
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Tongtong Bao
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Qian Yu
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Xin Wu
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China; TIB-UM Joint Laboratory of Synthetic Biology for Traditional Chinese Medicine, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Dong L, Yuan Q, Qiu G, Zhang Y, Wang H, Yu L. Protective Effects of Tea Tree Oil on Inflammatory Injury of Porcine Intestinal Epithelial Cells Induced by Lipopolysaccharide In Vitro. Animals (Basel) 2024; 14:2577. [PMID: 39272362 PMCID: PMC11394478 DOI: 10.3390/ani14172577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Tea tree oil (TTO) improves the intestinal mucosal immunity of weaning piglets, but its underlying mechanism is not clear. We hypothesized that TTO may alleviate inflammatory injury by regulating the function of intestinal epithelial cells. Ileum epithelial cells (IPI-2I) were chosen and an inflammatory injury cell model was generated. The cell viability, cytokine secretion, and gene expression of TLR4 and NF-κB were measured to further evaluate the effects of TTO on the inflammatory injury in immune-stressed cells. The results showed that lipopolysaccharide (LPS; content: ≥30 μg/mL; time: 3 h, 6 h, or 9 h) decreased cell viability (p < 0.01), and 50 μg/mL LPS stimulated for 6 h resulted in an increased secretion of proinflammatory cytokines and a dramatically decreased secretion of anti-inflammatory cytokines (p < 0.05) in IPI-2I cells. Concentrations of 0-0.05% of TTO improved cell viability, while the 0.03% TTO treatment resulted in the highest cell viability and alleviated LPS-induced cell death (p < 0.01). In addition, 0.03% TTO alleviated the LPS-induced increase in the gene expression of IL-1β, TNFα, and IFNγ, as well as the decrease in the expression of IL-10 in IPI-2I cells (p < 0.05). LPS also upregulated the gene expression of TLR4 and NF-κB (p < 0.05); while TTO supplementation alleviated this effect (p < 0.05), 0.03% and 0.05% TTO supplementation had greater effects (p < 0.05). In conclusion, 50 μg/mL LPS stimulated for 6 h can be used to establish an immune-stressed cell model in IPI-2I cell lines, and 0.03% TTO treatment for 6 h alleviated inflammatory injury in the intestinal epithelial cells of pigs.
Collapse
Affiliation(s)
- Li Dong
- College of Animal Science and Technology, Yangzhou University, No. 48 of East Wenhui Road, Yangzhou 225009, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Yuan
- College of Animal Science and Technology, Yangzhou University, No. 48 of East Wenhui Road, Yangzhou 225009, China
| | - Guangzhi Qiu
- College of Animal Science and Technology, Yangzhou University, No. 48 of East Wenhui Road, Yangzhou 225009, China
| | - Yongsheng Zhang
- College of Animal Science and Technology, Yangzhou University, No. 48 of East Wenhui Road, Yangzhou 225009, China
| | - Hongrong Wang
- College of Animal Science and Technology, Yangzhou University, No. 48 of East Wenhui Road, Yangzhou 225009, China
| | - Lihuai Yu
- College of Animal Science and Technology, Yangzhou University, No. 48 of East Wenhui Road, Yangzhou 225009, China
| |
Collapse
|
3
|
Hahn S, Kim G, Jin SM, Kim JH. Protective effects of metformin in the pro-inflammatory cytokine induced intestinal organoids injury model. Biochem Biophys Res Commun 2024; 690:149291. [PMID: 38006803 DOI: 10.1016/j.bbrc.2023.149291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Pathogenesis of inflammatory bowel disease (IBD) accompanies disrupted intestinal tight junctions. However, many approaches of therapeutics for IBD are focused only on anti-inflammatory effects and most cellular experiments are based on two-dimensional cell lines which have insufficient circumstances of intestine. Thus, here, we used three-dimensional structure intestinal organoids to investigate effects of metformin in the in vitro IBD condition. In this study, we focused on both tight junctions and the levels of inflammatory cytokines. Metformin enhances the intestinal barrier in injured intestine via upregulation of AMP-activated protein kinase, dysfunction of which contributes to the pathogenesis of intestinal diseases. We aim to investigate the effects of metformin on cytokine-induced injured intestinal organoids. Tumor necrosis factor-alpha (TNF-α) was used to induce intestinal injury in an organoid model, and the effects of metformin were assessed. Cell viability and levels of inflammatory cytokines were quantified in addition to tight junction markers. Furthermore, 4 kDa FITC-dextran was used to assess intestinal permeability. The upregulation of inflammatory cytokine levels was alleviated by metformin, which also restored the intestinal epithelium permeability in TNF-α-treated injury organoids. We confirmed that claudin-2 and claudin-7, representative tight junction markers, were also protected by metformin treatment. This study confirms the protective effects of metformin, which could be used as a therapeutic strategy for inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Soojung Hahn
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| | - Jae Hyeon Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea.
| |
Collapse
|
4
|
Firouzi Amandi A, Shahrtash SA, Kalavi S, Moliani A, Mousazadeh H, Rezai Seghin Sara M, Dadashpour M. Fabrication and characterization of metformin-loaded PLGA/Collagen nanofibers for modulation of macrophage polarization for tissue engineering and regenerative medicine. BMC Biotechnol 2023; 23:55. [PMID: 38115008 PMCID: PMC10731790 DOI: 10.1186/s12896-023-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
In tissue engineering (TE) and regenerative medicine, the accessibility of engineered scaffolds that modulate inflammatory states is extremely necessary. The aim of the current work was to assess the efficacy of metformin (MET) incorporated in PLGA/Collagen nanofibers (Met-PLGA/Col NFs) to modulate RAW264.7 macrophage phenotype from pro-inflammatory status (M1) to anti-inflammatory status (M2). Given this, MET-PLGA/Col NFs were fabricated using an electrospinning technique. Structural characterization such as morphology, chemical and mechanical properties, and drug discharge pattern were assessed. MTT assay test exposed that MET-PLGA/Col NFs remarkably had increased cell survival in comparison with pure PLGA/Collagen NFs and control (p < 0.05) 72 h after incubation. Based on the qPCR assay, a reduction in the expression of iNOS-2 and SOCS3 was found in the cells seeded on MET-PLGA/Col NFs, demonstrating the substantial modulation of the M1 phenotype to the M2 phenotype. Moreover, it was determined a main decrease in the pro-inflammatory cytokines and mediator's expression but the growth factors amount related to anti-inflammatory M2 were meaningfully upregulated. Finally, MET-PLGA/Col NFs possibly will ensure a beneficial potential for effective variation of the macrophage response from an inflammatory phase (M1) to a pro-regenerative (M2) phase.
Collapse
Affiliation(s)
| | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Mousazadeh
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|