1
|
Nguyen HM, Gaikwad S, Oladejo M, Paulishak W, Wood LM. Targeting Ubiquitin-like Protein, ISG15, as a Novel Tumor Associated Antigen in Colorectal Cancer. Cancers (Basel) 2023; 15:1237. [PMID: 36831577 PMCID: PMC9954464 DOI: 10.3390/cancers15041237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in both men and women in the United States. While immune checkpoint inhibitor (ICI) therapy is demonstrating remarkable clinical responses, the resistance and immune-related toxicities associated with ICIs demonstrate the need to develop additional immunotherapy options for CRC patients. Cancer vaccines represent a safe and promising treatment approach for CRC. As previously developed tumor-associated antigen (TAA)-based cancer vaccines for CRC are not demonstrating promising results, we propose that interferon-stimulated gene 15 (ISG15) is a novel TAA and therapeutic target for CRC. Our work demonstrates the anti-tumor efficacy of a Listeria-based vaccine targeting ISG15, designated Lm-LLO-ISG15, in an immunocompetent CRC murine model. The Lm-LLO-ISG15-mediated anti-tumor response is associated with an increased influx of functional T cells, higher production of multiple intracellular cytokines response, a lower number of regulatory T cells, and a greater ratio of effector to regulatory T cells (Teff/Treg) in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Laurence M. Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
2
|
Ji Q, Ma J, Wang S, Liu Q. Systematic identification of a panel of strong promoter regions from Listeria monocytogenes for fine-tuning gene expression. Microb Cell Fact 2021; 20:132. [PMID: 34247599 PMCID: PMC8273982 DOI: 10.1186/s12934-021-01628-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/05/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Attenuated Listeria monocytogenes (Lm) has been widely used as a vaccine vector in the prevention and treatment of pathogen infection and tumor diseases. In addition, previous studies have proved that the attenuated Lm can protect zebrafish from Vibrio infections, indicating that the attenuated Lm has a good application prospect in the field of aquatic vaccines. However, the limitation mainly lies in the lack of a set of well-characterized natural promoters for the expression of target antigens in attenuated Lm. RESULTS In our study, candidate strong promoters were identified through RNA-seq analysis, and characterized in Lm through enhanced green fluorescent protein (EGFP). Nine native promoters that showed stronger activities than that of the known strong promoter P36 under two tested temperatures (28 and 37 °C) were selected from the set, and P29 with the highest activity was 24-fold greater than P36. Furthermore, we demonstrated that P29 could initiate EGFP expression in ZF4 cells and zebrafish embryos. CONCLUSIONS This well-characterized promoter library can be used to fine-tune the expression of different proteins in Lm. The availability of a well-characterized promoter toolbox of Lm is essential for the analysis of yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
3
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
4
|
van Kruistum H, van den Heuvel J, Travis J, Kraaijeveld K, Zwaan BJ, Groenen MAM, Megens HJ, Pollux BJA. The genome of the live-bearing fish Heterandria formosa implicates a role of conserved vertebrate genes in the evolution of placental fish. BMC Evol Biol 2019; 19:156. [PMID: 31349784 PMCID: PMC6660938 DOI: 10.1186/s12862-019-1484-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/19/2019] [Indexed: 01/15/2023] Open
Abstract
Background The evolution of complex organs is thought to occur via a stepwise process, each subsequent step increasing the organ’s complexity by a tiny amount. This evolutionary process can be studied by comparing closely related species that vary in the presence or absence of their organs. This is the case for the placenta in the live-bearing fish family Poeciliidae, as members of this family vary markedly in their ability to supply nutrients to their offspring via a placenta. Here, we investigate the genomic basis underlying this phenotypic variation in Heterandria formosa, a poeciliid fish with a highly complex placenta. We compare this genome to three published reference genomes of non-placental poeciliid fish to gain insight in which genes may have played a role in the evolution of the placenta in the Poeciliidae. Results We sequenced the genome of H. formosa, providing the first whole genome sequence for a placental poeciliid. We looked for signatures of adaptive evolution by comparing its gene sequences to those of three non-placental live-bearing relatives. Using comparative evolutionary analyses, we found 17 genes that were positively selected exclusively in H. formosa, as well as five gene duplications exclusive to H. formosa. Eight of the genes evolving under positive selection in H. formosa have a placental function in mammals, most notably endometrial tissue remodelling or endometrial cell proliferation. Conclusions Our results show that a substantial portion of positively selected genes have a function that correlates well with the morphological changes that form the placenta of H. formosa, compared to the corresponding tissue in non-placental poeciliids. These functions are mainly endometrial tissue remodelling and endometrial cell proliferation. Therefore, we hypothesize that natural selection acting on genes involved in these functions plays a key role in the evolution of the placenta in H. formosa. Electronic supplementary material The online version of this article (10.1186/s12862-019-1484-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henri van Kruistum
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands. .,Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands.
| | - Joost van den Heuvel
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, USA
| | - Ken Kraaijeveld
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Leiden Genome Technology Center Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bas J Zwaan
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Bart J A Pollux
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
5
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
6
|
Ding C, Ma J, Dong Q, Liu Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol Lett 2018; 197:70-77. [PMID: 29550258 DOI: 10.1016/j.imlet.2018.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Live bacteria, including attenuated bacteria and probiotics, can be engineered to deliver target antigen to excite the host immune system. The preponderance of these live bacterial vaccine vectors is that they can stimulate durable humoral and cellular immunity. Moreover, delivery strategies of heterologous antigen in live bacterial promote the applications of new vaccine development. Genetic technologies are evolving, which potentiate the developing of heterologous antigen delivery systems, including bacterial surface display system, bacterial secretion system and balanced lethal vector system. Although the live bacterial vaccine vector is a powerful adjuvant, certain disadvantages, such as safety risk, must also be taken into account. In this review, we compare the development of representative live bacterial vectors, and summarize the main characterizations of the various delivery strategies of heterologous antigen in live vector vaccines.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
7
|
Shrimali R, Ahmad S, Berrong Z, Okoev G, Matevosyan A, Razavi GSE, Petit R, Gupta S, Mkrtichyan M, Khleif SN. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy. J Immunother Cancer 2017; 5:64. [PMID: 28807056 PMCID: PMC5557467 DOI: 10.1186/s40425-017-0266-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Background We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4+ and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment. Methods Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations. Results We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4+ and CD8+ T cells along with a decrease of inhibitory cells. Conclusion To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Rajeev Shrimali
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Shamim Ahmad
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zuzana Berrong
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Grigori Okoev
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Adelaida Matevosyan
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | | | - Robert Petit
- Advaxis Immunotherapies, Princeton, NJ, 08540, USA
| | - Seema Gupta
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Mikayel Mkrtichyan
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Samir N Khleif
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Jia YY, Tan WJ, Duan FF, Pan ZM, Chen X, Yin YL, Jiao XA. A Genetically Modified attenuated Listeria Vaccine Expressing HPV16 E7 Kill Tumor Cells in Direct and Antigen-Specific Manner. Front Cell Infect Microbiol 2017; 7:279. [PMID: 28706878 PMCID: PMC5489629 DOI: 10.3389/fcimb.2017.00279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 01/20/2023] Open
Abstract
Attenuated Listeria monocytogenes (L. monocytogenes, LM) induces specific CD8+ and CD4+ T cell responses, and has been identified as a promising cancer vaccine vector. Cervical cancer is the third most common cancer in women worldwide, with human papillomavirus (HPV), particularly type 16, being the main etiological factor. The therapeutic HPV vaccines are urgently needed. The E7 protein of HPV is necessary for maintaining malignancy in tumor cells. Here, a genetically modified attenuated LM expressing HPV16 E7 protein was constructed. Intraperitoneal vaccination of LM4Δhly::E7 significantly reduced tumor size and even resulted in complete regression of established tumors in a murine model of cervical cancer. We provided evidence that recombinant LM strains could enter the tumor tissue and induce non-specific tumor cell death, probably via activation of reactive oxygen species and increased intracellular Ca2+ levels. LM4Δhly::E7 effectively triggered a strong antigen-specific cellular immunity in tumor-bearing mice, and elicited significant infiltration of T cells in the intratumoral milieu. In summary, these data showed LM4Δhly::E7 to be effective in a cervical cancer model and LM4Δhly::E7 induced an antitumor effect by antigen-specific cellular immune responses and direct killing of tumor cells, indicating a potential application against cervical cancer.
Collapse
Affiliation(s)
- Yan Yan Jia
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Wei Jun Tan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Fei Fei Duan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Zhi Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Yue Lan Yin
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xin An Jiao
- Jiangsu Key Laboratory of Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| |
Collapse
|
9
|
Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky JA, Khleif SN. Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res 2014; 2:911-22. [PMID: 24872025 DOI: 10.1158/2326-6066.cir-13-0197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies have shown that Listeria monocytogenes (Lm)-based vaccine expressing a fusion protein comprising truncated listeriolysin O (LLO) and human papilloma virus (HPV) E7 protein (Lm-LLO-E7) induces a decrease in regulatory T cells (Treg) and complete regression of established, transplanted HPV-TC-1 tumors in mice. However, how the Lm-based vaccine causes a decrease in Tregs remains unclear. Using a highly attenuated Lm dal dat ΔactA strain (LmddA)-based vaccine, we report here that the vector LmddA was sufficient to induce a decrease in the proportion of Tregs by preferentially expanding CD4(+)FoxP3(-) T cells and CD8(+) T cells by a mechanism dependent on and directly mediated by LLO. Episomal expression of a nonhemolytic truncated LLO in Lm (LmddA-LLO) significantly augmented the expansion, thus further decreasing Treg frequency. Although adoptive transfer of Tregs compromised the antitumor efficacy of the LmddA-LLO-E7 vaccine, a combination of LmddA-LLO and an Lm-based vaccine expressing E7 protein (Lm-E7) induced complete regression against established TC-1 tumors. An engineered LLO-minus Lm expressing perfringolysin O (PFO) that enables the recombinant bacteria to exit from the phagolysosome without LLO confirmed that the adjuvant effect was dependent on LLO. These results suggest that LLO may serve as a promising adjuvant by preferentially inducing the expansions of CD4(+)FoxP3(-) T cells and CD8(+) T cells, thus reducing the ratio of Tregs to CD4(+)FoxP3(-) T cells and to CD8(+) T cells favoring immune responses to eradicate tumor.
Collapse
Affiliation(s)
- Zhisong Chen
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Laurent Ozbun
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Namju Chong
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland;
| | - Samir N Khleif
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
10
|
Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouëllec A. Live-attenuated bacteria as a cancer vaccine vector. Expert Rev Vaccines 2014; 12:1139-54. [PMID: 24124876 DOI: 10.1586/14760584.2013.836914] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the emerging field of active and specific cancer immunotherapy, strategies using live-attenuated bacterial vectors have matured in terms of academic and industrial development. Different bacterial species can be genetically engineered to deliver antigen to APCs with strong adjuvant effects due to their microbial origin. Proteic or DNA-encoding antigen delivery routes and natural bacterial tropisms might differ among species, permitting different applications. After many academic efforts to resolve safety and efficacy issues, some firms have recently engaged clinical trials with live Listeria or Salmonella spp. We describe here the main technological advances that allowed bacteria to become one of the most promising vectors in cancer immunotherapy.
Collapse
Affiliation(s)
- Bertrand Toussaint
- Laboratoire TIMC-IMAG/TheREx (UMR 5525 CNRS-UJF), UFR de médecine, Université Joseph Fourier Grenoble I, 38700 La Tronche Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Yang Y, Hou J, Lin Z, Zhuo H, Chen D, Zhang X, Chen Y, Sun B. Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells. Cell Mol Immunol 2014; 11:184-96. [PMID: 24488178 DOI: 10.1038/cmi.2013.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 01/14/2023] Open
Abstract
Attenuated Listeria monocytogenes (LM) is a promising candidate vector for the delivery of cancer vaccines. After phagocytosis by antigen-presenting cells, this bacterium stimulates the major histocompatibility complex (MHC)-I and MHC-II pathways and induces the proliferation of antigen-specific T lymphocytes. A new strategy involving genetic modification of the replication-deficient LM strain ΔdalΔdat (Lmdd) to express and secrete human CD24 protein has been developed. CD24 is a hepatic cancer stem cell biomarker that is closely associated with apoptosis, metastasis and recurrence of hepatocellular carcinoma (HCC). After intravenous administration in mice, Lmdd-CD24 was distributed primarily in the spleen and liver and did not cause severe organ injury. Lmdd-CD24 effectively increased the number of interferon (IFN)-γ-producing CD8(+) T cells and IFN-γ secretion. Lmdd-CD24 also enhanced the number of IL-4- and IL-10-producing T helper 2 cells. The efficacy of the Lmdd-CD24 vaccine was further investigated against Hepa1-6-CD24 tumors, which were inguinally inoculated into mice. Lmdd-CD24 significantly reduced the tumor size in mice and increased their survival. Notably, a reduction of T regulatory cell (Treg) numbers and an enhancement of specific CD8(+) T-cell activity were observed in the tumor-infiltrating lymphocytes (TILs). These results suggest a potential application of the Lmdd-CD24 vaccine against HCC.
Collapse
Affiliation(s)
- Yu Yang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajie Hou
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhe Lin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Han Zhuo
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianyu Chen
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xudong Zhang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|